Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications

Ferrofluid samples consisting of magnetite nanoparticles (NPs) coated with oleic acid and dispersed in a non-polar organic solvent have been synthesized by chemical routes. Different volume fractions, , of magnetic NPs were considered. The overall structural characterization of NPs has been performe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2013-10, Vol.46 (39), p.395501-1-8
Hauptverfasser: Schinteie, G, Palade, P, Vekas, L, Iacob, N, Bartha, C, Kuncser, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1-8
container_issue 39
container_start_page 395501
container_title Journal of physics. D, Applied physics
container_volume 46
creator Schinteie, G
Palade, P
Vekas, L
Iacob, N
Bartha, C
Kuncser, V
description Ferrofluid samples consisting of magnetite nanoparticles (NPs) coated with oleic acid and dispersed in a non-polar organic solvent have been synthesized by chemical routes. Different volume fractions, , of magnetic NPs were considered. The overall structural characterization of NPs has been performed by x-ray diffractometry, with lattice parameters and average coherence lengths evaluated via Rietveld refinements. The magnetic properties of different samples have been analysed by SQUID magnetometry and temperature-dependent Mössbauer spectroscopy and finally explained by adequate magnetic relaxation mechanisms. Zero field cooling-field cooling protocols provided useful information about specific volume fraction dependent magnetic relaxation and de-freezing processes, the lack of the Verwey transition and stronger dipolar interactions at higher volume fractions. Anisotropy energies as obtained by both temperature dependent Mössbauer spectroscopy and magnetometry data are compared and a new procedure for a quantitative characterization of the dipolar interactions is proposed.
doi_str_mv 10.1088/0022-3727/46/39/395501
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27793334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464569148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-11c3daa6a267d806404512d8edd4f146b86cdaa2ce3fd35975eeb8b188e97a643</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQXIRvKxNNtls9ijFf1Dwoh68hDSZ1JTtZk12Bb-9WVp6FQbmMG_evPkhdE3JHSVSLggpy4LVZb3gYsGaXFVF6AmaUSZoIbhgp2h2FJ2ji5S2hJBKSDpDnx-hHXeAXdRm8KHDFnroLHQD3ulNB4M3eA1f-seHMeLgsIMYg2tHbxN2IeIYBj34boMT6Bbrvm-90ZNTukRnTrcJrg59jt4fH96Wz8Xq9elleb8qTM43FJQaZrUWuhS1lURwwitaWgnWcke5WEth8rw0wJxlVVNXAGu5plJCU2vB2Rzd7n37GL5HSIPa-WSgbXUHYUwqe_BKNJTLLBV7qYkhpQhO9dHvdPxVlKgJppo4qYmT4kKxRu1h5sWbww2djG4zrc74dNwu67phjE1Zyr3Oh15tM7Iuf_6f-R-7-ITh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464569148</pqid></control><display><type>article</type><title>Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Schinteie, G ; Palade, P ; Vekas, L ; Iacob, N ; Bartha, C ; Kuncser, V</creator><creatorcontrib>Schinteie, G ; Palade, P ; Vekas, L ; Iacob, N ; Bartha, C ; Kuncser, V</creatorcontrib><description>Ferrofluid samples consisting of magnetite nanoparticles (NPs) coated with oleic acid and dispersed in a non-polar organic solvent have been synthesized by chemical routes. Different volume fractions, , of magnetic NPs were considered. The overall structural characterization of NPs has been performed by x-ray diffractometry, with lattice parameters and average coherence lengths evaluated via Rietveld refinements. The magnetic properties of different samples have been analysed by SQUID magnetometry and temperature-dependent Mössbauer spectroscopy and finally explained by adequate magnetic relaxation mechanisms. Zero field cooling-field cooling protocols provided useful information about specific volume fraction dependent magnetic relaxation and de-freezing processes, the lack of the Verwey transition and stronger dipolar interactions at higher volume fractions. Anisotropy energies as obtained by both temperature dependent Mössbauer spectroscopy and magnetometry data are compared and a new procedure for a quantitative characterization of the dipolar interactions is proposed.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/46/39/395501</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anisotropy ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cooling ; Cross-disciplinary physics: materials science; rheology ; Domain effects, magnetization curves, and hysteresis ; Exact sciences and technology ; ferrofluids ; Magnetic liquids ; Magnetic properties ; Magnetic properties and materials ; Magnetic relaxation ; magnetite nanoparticles ; Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects ; Materials science ; Mössbauer spectroscopy and magnetometry ; Nanocrystalline materials ; Nanopowders ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Seals ; Specific volume ; Spectroscopy ; Studies of specific magnetic materials ; Volume fraction</subject><ispartof>Journal of physics. D, Applied physics, 2013-10, Vol.46 (39), p.395501-1-8</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-11c3daa6a267d806404512d8edd4f146b86cdaa2ce3fd35975eeb8b188e97a643</citedby><cites>FETCH-LOGICAL-c361t-11c3daa6a267d806404512d8edd4f146b86cdaa2ce3fd35975eeb8b188e97a643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0022-3727/46/39/395501/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27793334$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schinteie, G</creatorcontrib><creatorcontrib>Palade, P</creatorcontrib><creatorcontrib>Vekas, L</creatorcontrib><creatorcontrib>Iacob, N</creatorcontrib><creatorcontrib>Bartha, C</creatorcontrib><creatorcontrib>Kuncser, V</creatorcontrib><title>Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Ferrofluid samples consisting of magnetite nanoparticles (NPs) coated with oleic acid and dispersed in a non-polar organic solvent have been synthesized by chemical routes. Different volume fractions, , of magnetic NPs were considered. The overall structural characterization of NPs has been performed by x-ray diffractometry, with lattice parameters and average coherence lengths evaluated via Rietveld refinements. The magnetic properties of different samples have been analysed by SQUID magnetometry and temperature-dependent Mössbauer spectroscopy and finally explained by adequate magnetic relaxation mechanisms. Zero field cooling-field cooling protocols provided useful information about specific volume fraction dependent magnetic relaxation and de-freezing processes, the lack of the Verwey transition and stronger dipolar interactions at higher volume fractions. Anisotropy energies as obtained by both temperature dependent Mössbauer spectroscopy and magnetometry data are compared and a new procedure for a quantitative characterization of the dipolar interactions is proposed.</description><subject>Anisotropy</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cooling</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Domain effects, magnetization curves, and hysteresis</subject><subject>Exact sciences and technology</subject><subject>ferrofluids</subject><subject>Magnetic liquids</subject><subject>Magnetic properties</subject><subject>Magnetic properties and materials</subject><subject>Magnetic relaxation</subject><subject>magnetite nanoparticles</subject><subject>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</subject><subject>Materials science</subject><subject>Mössbauer spectroscopy and magnetometry</subject><subject>Nanocrystalline materials</subject><subject>Nanopowders</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Seals</subject><subject>Specific volume</subject><subject>Spectroscopy</subject><subject>Studies of specific magnetic materials</subject><subject>Volume fraction</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQXIRvKxNNtls9ijFf1Dwoh68hDSZ1JTtZk12Bb-9WVp6FQbmMG_evPkhdE3JHSVSLggpy4LVZb3gYsGaXFVF6AmaUSZoIbhgp2h2FJ2ji5S2hJBKSDpDnx-hHXeAXdRm8KHDFnroLHQD3ulNB4M3eA1f-seHMeLgsIMYg2tHbxN2IeIYBj34boMT6Bbrvm-90ZNTukRnTrcJrg59jt4fH96Wz8Xq9elleb8qTM43FJQaZrUWuhS1lURwwitaWgnWcke5WEth8rw0wJxlVVNXAGu5plJCU2vB2Rzd7n37GL5HSIPa-WSgbXUHYUwqe_BKNJTLLBV7qYkhpQhO9dHvdPxVlKgJppo4qYmT4kKxRu1h5sWbww2djG4zrc74dNwu67phjE1Zyr3Oh15tM7Iuf_6f-R-7-ITh</recordid><startdate>20131002</startdate><enddate>20131002</enddate><creator>Schinteie, G</creator><creator>Palade, P</creator><creator>Vekas, L</creator><creator>Iacob, N</creator><creator>Bartha, C</creator><creator>Kuncser, V</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131002</creationdate><title>Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications</title><author>Schinteie, G ; Palade, P ; Vekas, L ; Iacob, N ; Bartha, C ; Kuncser, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-11c3daa6a267d806404512d8edd4f146b86cdaa2ce3fd35975eeb8b188e97a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cooling</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Domain effects, magnetization curves, and hysteresis</topic><topic>Exact sciences and technology</topic><topic>ferrofluids</topic><topic>Magnetic liquids</topic><topic>Magnetic properties</topic><topic>Magnetic properties and materials</topic><topic>Magnetic relaxation</topic><topic>magnetite nanoparticles</topic><topic>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</topic><topic>Materials science</topic><topic>Mössbauer spectroscopy and magnetometry</topic><topic>Nanocrystalline materials</topic><topic>Nanopowders</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Seals</topic><topic>Specific volume</topic><topic>Spectroscopy</topic><topic>Studies of specific magnetic materials</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schinteie, G</creatorcontrib><creatorcontrib>Palade, P</creatorcontrib><creatorcontrib>Vekas, L</creatorcontrib><creatorcontrib>Iacob, N</creatorcontrib><creatorcontrib>Bartha, C</creatorcontrib><creatorcontrib>Kuncser, V</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schinteie, G</au><au>Palade, P</au><au>Vekas, L</au><au>Iacob, N</au><au>Bartha, C</au><au>Kuncser, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2013-10-02</date><risdate>2013</risdate><volume>46</volume><issue>39</issue><spage>395501</spage><epage>1-8</epage><pages>395501-1-8</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Ferrofluid samples consisting of magnetite nanoparticles (NPs) coated with oleic acid and dispersed in a non-polar organic solvent have been synthesized by chemical routes. Different volume fractions, , of magnetic NPs were considered. The overall structural characterization of NPs has been performed by x-ray diffractometry, with lattice parameters and average coherence lengths evaluated via Rietveld refinements. The magnetic properties of different samples have been analysed by SQUID magnetometry and temperature-dependent Mössbauer spectroscopy and finally explained by adequate magnetic relaxation mechanisms. Zero field cooling-field cooling protocols provided useful information about specific volume fraction dependent magnetic relaxation and de-freezing processes, the lack of the Verwey transition and stronger dipolar interactions at higher volume fractions. Anisotropy energies as obtained by both temperature dependent Mössbauer spectroscopy and magnetometry data are compared and a new procedure for a quantitative characterization of the dipolar interactions is proposed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/46/39/395501</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2013-10, Vol.46 (39), p.395501-1-8
issn 0022-3727
1361-6463
language eng
recordid cdi_pascalfrancis_primary_27793334
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Anisotropy
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cooling
Cross-disciplinary physics: materials science
rheology
Domain effects, magnetization curves, and hysteresis
Exact sciences and technology
ferrofluids
Magnetic liquids
Magnetic properties
Magnetic properties and materials
Magnetic relaxation
magnetite nanoparticles
Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects
Materials science
Mössbauer spectroscopy and magnetometry
Nanocrystalline materials
Nanopowders
Nanoscale materials and structures: fabrication and characterization
Physics
Seals
Specific volume
Spectroscopy
Studies of specific magnetic materials
Volume fraction
title Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume%20fraction%20dependent%20magnetic%20behaviour%20of%20ferrofluids%20for%20rotating%20seal%20applications&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Schinteie,%20G&rft.date=2013-10-02&rft.volume=46&rft.issue=39&rft.spage=395501&rft.epage=1-8&rft.pages=395501-1-8&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/46/39/395501&rft_dat=%3Cproquest_pasca%3E1464569148%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464569148&rft_id=info:pmid/&rfr_iscdi=true