Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications
Ferrofluid samples consisting of magnetite nanoparticles (NPs) coated with oleic acid and dispersed in a non-polar organic solvent have been synthesized by chemical routes. Different volume fractions, , of magnetic NPs were considered. The overall structural characterization of NPs has been performe...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2013-10, Vol.46 (39), p.395501-1-8 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1-8 |
---|---|
container_issue | 39 |
container_start_page | 395501 |
container_title | Journal of physics. D, Applied physics |
container_volume | 46 |
creator | Schinteie, G Palade, P Vekas, L Iacob, N Bartha, C Kuncser, V |
description | Ferrofluid samples consisting of magnetite nanoparticles (NPs) coated with oleic acid and dispersed in a non-polar organic solvent have been synthesized by chemical routes. Different volume fractions, , of magnetic NPs were considered. The overall structural characterization of NPs has been performed by x-ray diffractometry, with lattice parameters and average coherence lengths evaluated via Rietveld refinements. The magnetic properties of different samples have been analysed by SQUID magnetometry and temperature-dependent Mössbauer spectroscopy and finally explained by adequate magnetic relaxation mechanisms. Zero field cooling-field cooling protocols provided useful information about specific volume fraction dependent magnetic relaxation and de-freezing processes, the lack of the Verwey transition and stronger dipolar interactions at higher volume fractions. Anisotropy energies as obtained by both temperature dependent Mössbauer spectroscopy and magnetometry data are compared and a new procedure for a quantitative characterization of the dipolar interactions is proposed. |
doi_str_mv | 10.1088/0022-3727/46/39/395501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27793334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464569148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-11c3daa6a267d806404512d8edd4f146b86cdaa2ce3fd35975eeb8b188e97a643</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQXIRvKxNNtls9ijFf1Dwoh68hDSZ1JTtZk12Bb-9WVp6FQbmMG_evPkhdE3JHSVSLggpy4LVZb3gYsGaXFVF6AmaUSZoIbhgp2h2FJ2ji5S2hJBKSDpDnx-hHXeAXdRm8KHDFnroLHQD3ulNB4M3eA1f-seHMeLgsIMYg2tHbxN2IeIYBj34boMT6Bbrvm-90ZNTukRnTrcJrg59jt4fH96Wz8Xq9elleb8qTM43FJQaZrUWuhS1lURwwitaWgnWcke5WEth8rw0wJxlVVNXAGu5plJCU2vB2Rzd7n37GL5HSIPa-WSgbXUHYUwqe_BKNJTLLBV7qYkhpQhO9dHvdPxVlKgJppo4qYmT4kKxRu1h5sWbww2djG4zrc74dNwu67phjE1Zyr3Oh15tM7Iuf_6f-R-7-ITh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464569148</pqid></control><display><type>article</type><title>Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Schinteie, G ; Palade, P ; Vekas, L ; Iacob, N ; Bartha, C ; Kuncser, V</creator><creatorcontrib>Schinteie, G ; Palade, P ; Vekas, L ; Iacob, N ; Bartha, C ; Kuncser, V</creatorcontrib><description>Ferrofluid samples consisting of magnetite nanoparticles (NPs) coated with oleic acid and dispersed in a non-polar organic solvent have been synthesized by chemical routes. Different volume fractions, , of magnetic NPs were considered. The overall structural characterization of NPs has been performed by x-ray diffractometry, with lattice parameters and average coherence lengths evaluated via Rietveld refinements. The magnetic properties of different samples have been analysed by SQUID magnetometry and temperature-dependent Mössbauer spectroscopy and finally explained by adequate magnetic relaxation mechanisms. Zero field cooling-field cooling protocols provided useful information about specific volume fraction dependent magnetic relaxation and de-freezing processes, the lack of the Verwey transition and stronger dipolar interactions at higher volume fractions. Anisotropy energies as obtained by both temperature dependent Mössbauer spectroscopy and magnetometry data are compared and a new procedure for a quantitative characterization of the dipolar interactions is proposed.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/46/39/395501</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anisotropy ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cooling ; Cross-disciplinary physics: materials science; rheology ; Domain effects, magnetization curves, and hysteresis ; Exact sciences and technology ; ferrofluids ; Magnetic liquids ; Magnetic properties ; Magnetic properties and materials ; Magnetic relaxation ; magnetite nanoparticles ; Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects ; Materials science ; Mössbauer spectroscopy and magnetometry ; Nanocrystalline materials ; Nanopowders ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Seals ; Specific volume ; Spectroscopy ; Studies of specific magnetic materials ; Volume fraction</subject><ispartof>Journal of physics. D, Applied physics, 2013-10, Vol.46 (39), p.395501-1-8</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-11c3daa6a267d806404512d8edd4f146b86cdaa2ce3fd35975eeb8b188e97a643</citedby><cites>FETCH-LOGICAL-c361t-11c3daa6a267d806404512d8edd4f146b86cdaa2ce3fd35975eeb8b188e97a643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0022-3727/46/39/395501/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27793334$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schinteie, G</creatorcontrib><creatorcontrib>Palade, P</creatorcontrib><creatorcontrib>Vekas, L</creatorcontrib><creatorcontrib>Iacob, N</creatorcontrib><creatorcontrib>Bartha, C</creatorcontrib><creatorcontrib>Kuncser, V</creatorcontrib><title>Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Ferrofluid samples consisting of magnetite nanoparticles (NPs) coated with oleic acid and dispersed in a non-polar organic solvent have been synthesized by chemical routes. Different volume fractions, , of magnetic NPs were considered. The overall structural characterization of NPs has been performed by x-ray diffractometry, with lattice parameters and average coherence lengths evaluated via Rietveld refinements. The magnetic properties of different samples have been analysed by SQUID magnetometry and temperature-dependent Mössbauer spectroscopy and finally explained by adequate magnetic relaxation mechanisms. Zero field cooling-field cooling protocols provided useful information about specific volume fraction dependent magnetic relaxation and de-freezing processes, the lack of the Verwey transition and stronger dipolar interactions at higher volume fractions. Anisotropy energies as obtained by both temperature dependent Mössbauer spectroscopy and magnetometry data are compared and a new procedure for a quantitative characterization of the dipolar interactions is proposed.</description><subject>Anisotropy</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cooling</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Domain effects, magnetization curves, and hysteresis</subject><subject>Exact sciences and technology</subject><subject>ferrofluids</subject><subject>Magnetic liquids</subject><subject>Magnetic properties</subject><subject>Magnetic properties and materials</subject><subject>Magnetic relaxation</subject><subject>magnetite nanoparticles</subject><subject>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</subject><subject>Materials science</subject><subject>Mössbauer spectroscopy and magnetometry</subject><subject>Nanocrystalline materials</subject><subject>Nanopowders</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Seals</subject><subject>Specific volume</subject><subject>Spectroscopy</subject><subject>Studies of specific magnetic materials</subject><subject>Volume fraction</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQXIRvKxNNtls9ijFf1Dwoh68hDSZ1JTtZk12Bb-9WVp6FQbmMG_evPkhdE3JHSVSLggpy4LVZb3gYsGaXFVF6AmaUSZoIbhgp2h2FJ2ji5S2hJBKSDpDnx-hHXeAXdRm8KHDFnroLHQD3ulNB4M3eA1f-seHMeLgsIMYg2tHbxN2IeIYBj34boMT6Bbrvm-90ZNTukRnTrcJrg59jt4fH96Wz8Xq9elleb8qTM43FJQaZrUWuhS1lURwwitaWgnWcke5WEth8rw0wJxlVVNXAGu5plJCU2vB2Rzd7n37GL5HSIPa-WSgbXUHYUwqe_BKNJTLLBV7qYkhpQhO9dHvdPxVlKgJppo4qYmT4kKxRu1h5sWbww2djG4zrc74dNwu67phjE1Zyr3Oh15tM7Iuf_6f-R-7-ITh</recordid><startdate>20131002</startdate><enddate>20131002</enddate><creator>Schinteie, G</creator><creator>Palade, P</creator><creator>Vekas, L</creator><creator>Iacob, N</creator><creator>Bartha, C</creator><creator>Kuncser, V</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131002</creationdate><title>Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications</title><author>Schinteie, G ; Palade, P ; Vekas, L ; Iacob, N ; Bartha, C ; Kuncser, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-11c3daa6a267d806404512d8edd4f146b86cdaa2ce3fd35975eeb8b188e97a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cooling</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Domain effects, magnetization curves, and hysteresis</topic><topic>Exact sciences and technology</topic><topic>ferrofluids</topic><topic>Magnetic liquids</topic><topic>Magnetic properties</topic><topic>Magnetic properties and materials</topic><topic>Magnetic relaxation</topic><topic>magnetite nanoparticles</topic><topic>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</topic><topic>Materials science</topic><topic>Mössbauer spectroscopy and magnetometry</topic><topic>Nanocrystalline materials</topic><topic>Nanopowders</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Seals</topic><topic>Specific volume</topic><topic>Spectroscopy</topic><topic>Studies of specific magnetic materials</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schinteie, G</creatorcontrib><creatorcontrib>Palade, P</creatorcontrib><creatorcontrib>Vekas, L</creatorcontrib><creatorcontrib>Iacob, N</creatorcontrib><creatorcontrib>Bartha, C</creatorcontrib><creatorcontrib>Kuncser, V</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schinteie, G</au><au>Palade, P</au><au>Vekas, L</au><au>Iacob, N</au><au>Bartha, C</au><au>Kuncser, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2013-10-02</date><risdate>2013</risdate><volume>46</volume><issue>39</issue><spage>395501</spage><epage>1-8</epage><pages>395501-1-8</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Ferrofluid samples consisting of magnetite nanoparticles (NPs) coated with oleic acid and dispersed in a non-polar organic solvent have been synthesized by chemical routes. Different volume fractions, , of magnetic NPs were considered. The overall structural characterization of NPs has been performed by x-ray diffractometry, with lattice parameters and average coherence lengths evaluated via Rietveld refinements. The magnetic properties of different samples have been analysed by SQUID magnetometry and temperature-dependent Mössbauer spectroscopy and finally explained by adequate magnetic relaxation mechanisms. Zero field cooling-field cooling protocols provided useful information about specific volume fraction dependent magnetic relaxation and de-freezing processes, the lack of the Verwey transition and stronger dipolar interactions at higher volume fractions. Anisotropy energies as obtained by both temperature dependent Mössbauer spectroscopy and magnetometry data are compared and a new procedure for a quantitative characterization of the dipolar interactions is proposed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/46/39/395501</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2013-10, Vol.46 (39), p.395501-1-8 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_pascalfrancis_primary_27793334 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Anisotropy Condensed matter: electronic structure, electrical, magnetic, and optical properties Cooling Cross-disciplinary physics: materials science rheology Domain effects, magnetization curves, and hysteresis Exact sciences and technology ferrofluids Magnetic liquids Magnetic properties Magnetic properties and materials Magnetic relaxation magnetite nanoparticles Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects Materials science Mössbauer spectroscopy and magnetometry Nanocrystalline materials Nanopowders Nanoscale materials and structures: fabrication and characterization Physics Seals Specific volume Spectroscopy Studies of specific magnetic materials Volume fraction |
title | Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume%20fraction%20dependent%20magnetic%20behaviour%20of%20ferrofluids%20for%20rotating%20seal%20applications&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Schinteie,%20G&rft.date=2013-10-02&rft.volume=46&rft.issue=39&rft.spage=395501&rft.epage=1-8&rft.pages=395501-1-8&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/46/39/395501&rft_dat=%3Cproquest_pasca%3E1464569148%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464569148&rft_id=info:pmid/&rfr_iscdi=true |