Using Gibbs Energies to Calculate the Pt(111) Hupd Cyclic Voltammogram

The cyclic voltammogram for hydrogen on Pt(111) has been calculated using potential-dependent Gibbs reduction energies obtained by the Interface 1.0 code. The reversible potentials, U rev, are predicted by the equilibrium condition where the Gibbs energy of the oxidized reactant plus an electron and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-08, Vol.117 (34), p.17509-17513
Hauptverfasser: Asiri, Haleema Aied, Anderson, Alfred B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17513
container_issue 34
container_start_page 17509
container_title Journal of physical chemistry. C
container_volume 117
creator Asiri, Haleema Aied
Anderson, Alfred B.
description The cyclic voltammogram for hydrogen on Pt(111) has been calculated using potential-dependent Gibbs reduction energies obtained by the Interface 1.0 code. The reversible potentials, U rev, are predicted by the equilibrium condition where the Gibbs energy of the oxidized reactant plus an electron and the Gibbs energy of the reduced product, when graphed as functions of electrode potential, cross and are equal at the reversible potential. Reversible potentials are calculated for 12 different coverages of H(ads), and a third-order analytic function is fit to the results. Using the derivative of this function, the experimental voltage scan rate, and the experimentally observed maximum H(ads) coverage, the cyclic voltammogram can be calculated. With the Langmuir isotherm contribution −TΔS added to the Gibbs energies, the width of the predicted voltammogram and its maximum current density compare favorably with measurements from the literature. In detailed shape, the predicted current densities are curved more than the experimental ones near the maximum values, which is a feature ensured by the addition of the Langmuir term, which has an inflection at 0.5 ML coverage. This suggests the need for modification of the Langmuir isotherm near 0.5 ML coverage and possibly subtle improvements to the surface models used.
doi_str_mv 10.1021/jp401909n
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27734872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c077487428</sourcerecordid><originalsourceid>FETCH-LOGICAL-a281t-b698fddb7c87e8abf0358153c93d2d5bf7839f38caa2b7be15050e25630e825d3</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoOI4u_AfZCLqo5ibNJF1KmYcwoAvHbbh5tLb0RdMu5t-rKOPqnMXh4_ARcgvsERiHp3pIGWQs687IAjLBE5VKeX7qqbokVzHWjEnBQCzI5hCrrqTbytpI110YyypEOvU0x8bNDU6BTp-Bvk33APBAd_PgaX50TeXoR99M2LZ9OWJ7TS4KbGK4-cslOWzW7_ku2b9uX_LnfYJcw5TYVaYL761yWgWNtmBCapDCZcJzL22htMgKoR0it8oGkEyywOVKsKC59GJJ7n65A0aHTTFi56pohrFqcTwarpRIteL_O3TR1P08dt-vDDDzI8mcJIkvVldXuQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Gibbs Energies to Calculate the Pt(111) Hupd Cyclic Voltammogram</title><source>ACS Publications</source><creator>Asiri, Haleema Aied ; Anderson, Alfred B.</creator><creatorcontrib>Asiri, Haleema Aied ; Anderson, Alfred B.</creatorcontrib><description>The cyclic voltammogram for hydrogen on Pt(111) has been calculated using potential-dependent Gibbs reduction energies obtained by the Interface 1.0 code. The reversible potentials, U rev, are predicted by the equilibrium condition where the Gibbs energy of the oxidized reactant plus an electron and the Gibbs energy of the reduced product, when graphed as functions of electrode potential, cross and are equal at the reversible potential. Reversible potentials are calculated for 12 different coverages of H(ads), and a third-order analytic function is fit to the results. Using the derivative of this function, the experimental voltage scan rate, and the experimentally observed maximum H(ads) coverage, the cyclic voltammogram can be calculated. With the Langmuir isotherm contribution −TΔS added to the Gibbs energies, the width of the predicted voltammogram and its maximum current density compare favorably with measurements from the literature. In detailed shape, the predicted current densities are curved more than the experimental ones near the maximum values, which is a feature ensured by the addition of the Langmuir term, which has an inflection at 0.5 ML coverage. This suggests the need for modification of the Langmuir isotherm near 0.5 ML coverage and possibly subtle improvements to the surface models used.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp401909n</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Chemical thermodynamics ; Chemistry ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; General and physical chemistry ; General. Theory ; Physics ; Thermal properties of condensed matter ; Thermal properties of crystalline solids ; Thermodynamic properties</subject><ispartof>Journal of physical chemistry. C, 2013-08, Vol.117 (34), p.17509-17513</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp401909n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp401909n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27734872$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Asiri, Haleema Aied</creatorcontrib><creatorcontrib>Anderson, Alfred B.</creatorcontrib><title>Using Gibbs Energies to Calculate the Pt(111) Hupd Cyclic Voltammogram</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The cyclic voltammogram for hydrogen on Pt(111) has been calculated using potential-dependent Gibbs reduction energies obtained by the Interface 1.0 code. The reversible potentials, U rev, are predicted by the equilibrium condition where the Gibbs energy of the oxidized reactant plus an electron and the Gibbs energy of the reduced product, when graphed as functions of electrode potential, cross and are equal at the reversible potential. Reversible potentials are calculated for 12 different coverages of H(ads), and a third-order analytic function is fit to the results. Using the derivative of this function, the experimental voltage scan rate, and the experimentally observed maximum H(ads) coverage, the cyclic voltammogram can be calculated. With the Langmuir isotherm contribution −TΔS added to the Gibbs energies, the width of the predicted voltammogram and its maximum current density compare favorably with measurements from the literature. In detailed shape, the predicted current densities are curved more than the experimental ones near the maximum values, which is a feature ensured by the addition of the Langmuir term, which has an inflection at 0.5 ML coverage. This suggests the need for modification of the Langmuir isotherm near 0.5 ML coverage and possibly subtle improvements to the surface models used.</description><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General. Theory</subject><subject>Physics</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of crystalline solids</subject><subject>Thermodynamic properties</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLxDAUhYMoOI4u_AfZCLqo5ibNJF1KmYcwoAvHbbh5tLb0RdMu5t-rKOPqnMXh4_ARcgvsERiHp3pIGWQs687IAjLBE5VKeX7qqbokVzHWjEnBQCzI5hCrrqTbytpI110YyypEOvU0x8bNDU6BTp-Bvk33APBAd_PgaX50TeXoR99M2LZ9OWJ7TS4KbGK4-cslOWzW7_ku2b9uX_LnfYJcw5TYVaYL761yWgWNtmBCapDCZcJzL22htMgKoR0it8oGkEyywOVKsKC59GJJ7n65A0aHTTFi56pohrFqcTwarpRIteL_O3TR1P08dt-vDDDzI8mcJIkvVldXuQ</recordid><startdate>20130829</startdate><enddate>20130829</enddate><creator>Asiri, Haleema Aied</creator><creator>Anderson, Alfred B.</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20130829</creationdate><title>Using Gibbs Energies to Calculate the Pt(111) Hupd Cyclic Voltammogram</title><author>Asiri, Haleema Aied ; Anderson, Alfred B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a281t-b698fddb7c87e8abf0358153c93d2d5bf7839f38caa2b7be15050e25630e825d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General. Theory</topic><topic>Physics</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of crystalline solids</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asiri, Haleema Aied</creatorcontrib><creatorcontrib>Anderson, Alfred B.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asiri, Haleema Aied</au><au>Anderson, Alfred B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Gibbs Energies to Calculate the Pt(111) Hupd Cyclic Voltammogram</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-08-29</date><risdate>2013</risdate><volume>117</volume><issue>34</issue><spage>17509</spage><epage>17513</epage><pages>17509-17513</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The cyclic voltammogram for hydrogen on Pt(111) has been calculated using potential-dependent Gibbs reduction energies obtained by the Interface 1.0 code. The reversible potentials, U rev, are predicted by the equilibrium condition where the Gibbs energy of the oxidized reactant plus an electron and the Gibbs energy of the reduced product, when graphed as functions of electrode potential, cross and are equal at the reversible potential. Reversible potentials are calculated for 12 different coverages of H(ads), and a third-order analytic function is fit to the results. Using the derivative of this function, the experimental voltage scan rate, and the experimentally observed maximum H(ads) coverage, the cyclic voltammogram can be calculated. With the Langmuir isotherm contribution −TΔS added to the Gibbs energies, the width of the predicted voltammogram and its maximum current density compare favorably with measurements from the literature. In detailed shape, the predicted current densities are curved more than the experimental ones near the maximum values, which is a feature ensured by the addition of the Langmuir term, which has an inflection at 0.5 ML coverage. This suggests the need for modification of the Langmuir isotherm near 0.5 ML coverage and possibly subtle improvements to the surface models used.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp401909n</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-08, Vol.117 (34), p.17509-17513
issn 1932-7447
1932-7455
language eng
recordid cdi_pascalfrancis_primary_27734872
source ACS Publications
subjects Chemical thermodynamics
Chemistry
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
General and physical chemistry
General. Theory
Physics
Thermal properties of condensed matter
Thermal properties of crystalline solids
Thermodynamic properties
title Using Gibbs Energies to Calculate the Pt(111) Hupd Cyclic Voltammogram
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Gibbs%20Energies%20to%20Calculate%20the%20Pt(111)%20Hupd%20Cyclic%20Voltammogram&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Asiri,%20Haleema%20Aied&rft.date=2013-08-29&rft.volume=117&rft.issue=34&rft.spage=17509&rft.epage=17513&rft.pages=17509-17513&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp401909n&rft_dat=%3Cacs_pasca%3Ec077487428%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true