Thermal analyses of LiFePO4/graphite battery discharge processes

An electrochemical–thermal coupling model is developed to describe the LiFePO4/graphite battery discharge and charge processes. Various heat generations/consumptions including Joule heat, reversible entropy heat, contact resistance heat, irreversible electrochemical reaction heat, ionic migration he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2013-12, Vol.243, p.181-194
Hauptverfasser: Jiang, Fangming, Peng, Peng, Sun, Yiqiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue
container_start_page 181
container_title Journal of power sources
container_volume 243
creator Jiang, Fangming
Peng, Peng
Sun, Yiqiong
description An electrochemical–thermal coupling model is developed to describe the LiFePO4/graphite battery discharge and charge processes. Various heat generations/consumptions including Joule heat, reversible entropy heat, contact resistance heat, irreversible electrochemical reaction heat, ionic migration heat, and convective heat release to the ambient during charge or discharge processes are calculated in detail. The developed model is first validated by experimental data. Then systematic and comprehensive thermal analyses with respect to various discharge processes are performed based on the simulated results. For the specific cell considered, the irreversible electrochemical reaction heat and contact resistance heat are found to be the two main heat generation sources; for discharge processes of higher C-rate, the contact resistance heat take more proportion of the total heat generation as it is directly proportional to the squared discharge current density; the ionic migration heat is a sink with magnitude being about 1/3 of the Joule heat. The reversible entropy heat changes its sign from a negative heat sink to a positive heat source during a discharge process and its changing magnitude may be comparable to the irreversible electrochemical reaction heat for all the discharge processes of different C-rates. •We develop an electrochemical–thermal model for LiFePO4/graphite batteries.•Various heat sources/sinks are fully handled in this model.•Model results provide detailed insight into the battery discharge processes.•Comprehensive thermal analyses to discharge processes are conducted.•Distribution and evolution of heat sources/sinks are extensively scrutinized.
doi_str_mv 10.1016/j.jpowsour.2013.05.089
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27712737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313008793</els_id><sourcerecordid>S0378775313008793</sourcerecordid><originalsourceid>FETCH-LOGICAL-e279t-d014f43cd47454a03fd0411f51e9cd364a11312b9103c54aff1a46e2513ac2b53</originalsourceid><addsrcrecordid>eNo10E9PwkAQh-GN0UREv4LpxWPLzP5h6Q1DRE1I8IDnzbKdhW0KbXarhm9vCXqay5PJLy9jjwgFAk4ndVF37U9qv2LBAUUBqoBZecVGONMi51qpazYCoWe51krcsruUagBA1DBi882e4sE2mT3a5pQoZa3PVmFJH2s52UXb7UNP2db2PcVTVoXk9jbuKOti6ygN_p7deNskevi7Y_a5fNks3vLV-vV98bzKieuyzytA6aVwldRSSQvCVyARvUIqXSWm0iIK5NsSQbgBeI9WTokrFNbxrRJj9nT529nkbOOjPbqQTBfDwcaT4Voj10IPbn5xNIz5DhRNcoGOjqoQyfWmaoNBMOdypjb_5cy5nAFlhnLiFyuYZPY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal analyses of LiFePO4/graphite battery discharge processes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jiang, Fangming ; Peng, Peng ; Sun, Yiqiong</creator><creatorcontrib>Jiang, Fangming ; Peng, Peng ; Sun, Yiqiong</creatorcontrib><description>An electrochemical–thermal coupling model is developed to describe the LiFePO4/graphite battery discharge and charge processes. Various heat generations/consumptions including Joule heat, reversible entropy heat, contact resistance heat, irreversible electrochemical reaction heat, ionic migration heat, and convective heat release to the ambient during charge or discharge processes are calculated in detail. The developed model is first validated by experimental data. Then systematic and comprehensive thermal analyses with respect to various discharge processes are performed based on the simulated results. For the specific cell considered, the irreversible electrochemical reaction heat and contact resistance heat are found to be the two main heat generation sources; for discharge processes of higher C-rate, the contact resistance heat take more proportion of the total heat generation as it is directly proportional to the squared discharge current density; the ionic migration heat is a sink with magnitude being about 1/3 of the Joule heat. The reversible entropy heat changes its sign from a negative heat sink to a positive heat source during a discharge process and its changing magnitude may be comparable to the irreversible electrochemical reaction heat for all the discharge processes of different C-rates. •We develop an electrochemical–thermal model for LiFePO4/graphite batteries.•Various heat sources/sinks are fully handled in this model.•Model results provide detailed insight into the battery discharge processes.•Comprehensive thermal analyses to discharge processes are conducted.•Distribution and evolution of heat sources/sinks are extensively scrutinized.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.05.089</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Discharge process ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical–thermal model ; Exact sciences and technology ; Lithium iron phosphate battery ; Thermal analyses</subject><ispartof>Journal of power sources, 2013-12, Vol.243, p.181-194</ispartof><rights>2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2013.05.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27712737$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Fangming</creatorcontrib><creatorcontrib>Peng, Peng</creatorcontrib><creatorcontrib>Sun, Yiqiong</creatorcontrib><title>Thermal analyses of LiFePO4/graphite battery discharge processes</title><title>Journal of power sources</title><description>An electrochemical–thermal coupling model is developed to describe the LiFePO4/graphite battery discharge and charge processes. Various heat generations/consumptions including Joule heat, reversible entropy heat, contact resistance heat, irreversible electrochemical reaction heat, ionic migration heat, and convective heat release to the ambient during charge or discharge processes are calculated in detail. The developed model is first validated by experimental data. Then systematic and comprehensive thermal analyses with respect to various discharge processes are performed based on the simulated results. For the specific cell considered, the irreversible electrochemical reaction heat and contact resistance heat are found to be the two main heat generation sources; for discharge processes of higher C-rate, the contact resistance heat take more proportion of the total heat generation as it is directly proportional to the squared discharge current density; the ionic migration heat is a sink with magnitude being about 1/3 of the Joule heat. The reversible entropy heat changes its sign from a negative heat sink to a positive heat source during a discharge process and its changing magnitude may be comparable to the irreversible electrochemical reaction heat for all the discharge processes of different C-rates. •We develop an electrochemical–thermal model for LiFePO4/graphite batteries.•Various heat sources/sinks are fully handled in this model.•Model results provide detailed insight into the battery discharge processes.•Comprehensive thermal analyses to discharge processes are conducted.•Distribution and evolution of heat sources/sinks are extensively scrutinized.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Discharge process</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical–thermal model</subject><subject>Exact sciences and technology</subject><subject>Lithium iron phosphate battery</subject><subject>Thermal analyses</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo10E9PwkAQh-GN0UREv4LpxWPLzP5h6Q1DRE1I8IDnzbKdhW0KbXarhm9vCXqay5PJLy9jjwgFAk4ndVF37U9qv2LBAUUBqoBZecVGONMi51qpazYCoWe51krcsruUagBA1DBi882e4sE2mT3a5pQoZa3PVmFJH2s52UXb7UNP2db2PcVTVoXk9jbuKOti6ygN_p7deNskevi7Y_a5fNks3vLV-vV98bzKieuyzytA6aVwldRSSQvCVyARvUIqXSWm0iIK5NsSQbgBeI9WTokrFNbxrRJj9nT529nkbOOjPbqQTBfDwcaT4Voj10IPbn5xNIz5DhRNcoGOjqoQyfWmaoNBMOdypjb_5cy5nAFlhnLiFyuYZPY</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Jiang, Fangming</creator><creator>Peng, Peng</creator><creator>Sun, Yiqiong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20131201</creationdate><title>Thermal analyses of LiFePO4/graphite battery discharge processes</title><author>Jiang, Fangming ; Peng, Peng ; Sun, Yiqiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e279t-d014f43cd47454a03fd0411f51e9cd364a11312b9103c54aff1a46e2513ac2b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Discharge process</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical–thermal model</topic><topic>Exact sciences and technology</topic><topic>Lithium iron phosphate battery</topic><topic>Thermal analyses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Fangming</creatorcontrib><creatorcontrib>Peng, Peng</creatorcontrib><creatorcontrib>Sun, Yiqiong</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Fangming</au><au>Peng, Peng</au><au>Sun, Yiqiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal analyses of LiFePO4/graphite battery discharge processes</atitle><jtitle>Journal of power sources</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>243</volume><spage>181</spage><epage>194</epage><pages>181-194</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>An electrochemical–thermal coupling model is developed to describe the LiFePO4/graphite battery discharge and charge processes. Various heat generations/consumptions including Joule heat, reversible entropy heat, contact resistance heat, irreversible electrochemical reaction heat, ionic migration heat, and convective heat release to the ambient during charge or discharge processes are calculated in detail. The developed model is first validated by experimental data. Then systematic and comprehensive thermal analyses with respect to various discharge processes are performed based on the simulated results. For the specific cell considered, the irreversible electrochemical reaction heat and contact resistance heat are found to be the two main heat generation sources; for discharge processes of higher C-rate, the contact resistance heat take more proportion of the total heat generation as it is directly proportional to the squared discharge current density; the ionic migration heat is a sink with magnitude being about 1/3 of the Joule heat. The reversible entropy heat changes its sign from a negative heat sink to a positive heat source during a discharge process and its changing magnitude may be comparable to the irreversible electrochemical reaction heat for all the discharge processes of different C-rates. •We develop an electrochemical–thermal model for LiFePO4/graphite batteries.•Various heat sources/sinks are fully handled in this model.•Model results provide detailed insight into the battery discharge processes.•Comprehensive thermal analyses to discharge processes are conducted.•Distribution and evolution of heat sources/sinks are extensively scrutinized.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.05.089</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2013-12, Vol.243, p.181-194
issn 0378-7753
1873-2755
language eng
recordid cdi_pascalfrancis_primary_27712737
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Direct energy conversion and energy accumulation
Discharge process
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemical–thermal model
Exact sciences and technology
Lithium iron phosphate battery
Thermal analyses
title Thermal analyses of LiFePO4/graphite battery discharge processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20analyses%20of%20LiFePO4/graphite%20battery%20discharge%20processes&rft.jtitle=Journal%20of%20power%20sources&rft.au=Jiang,%20Fangming&rft.date=2013-12-01&rft.volume=243&rft.spage=181&rft.epage=194&rft.pages=181-194&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.05.089&rft_dat=%3Celsevier_pasca%3ES0378775313008793%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378775313008793&rfr_iscdi=true