AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter

Growth and electrical characterization of aluminum gallium nitride (AlGaN)/SiC heterojunction bipolar transistors (HBTs) featuring AlN/GaN short-period superlattice as a quasi-AlGaN emitter are presented. The AlN/GaN superlattice emitter was grown by molecular beam epitaxy on off-axis SiC, which sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2013-09, Vol.60 (9), p.2768-2775
Hauptverfasser: Miyake, Hiroki, Kimoto, Tsunenobu, Suda, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2775
container_issue 9
container_start_page 2768
container_title IEEE transactions on electron devices
container_volume 60
creator Miyake, Hiroki
Kimoto, Tsunenobu
Suda, Jun
description Growth and electrical characterization of aluminum gallium nitride (AlGaN)/SiC heterojunction bipolar transistors (HBTs) featuring AlN/GaN short-period superlattice as a quasi-AlGaN emitter are presented. The AlN/GaN superlattice emitter was grown by molecular beam epitaxy on off-axis SiC, which showed adequate structural and electronic properties as the emitter of the HBTs. We investigated the impact of Al composition in the emitter on the transport characteristics and current gain of the HBTs. Using Al composition of over 0.5, we achieved type-I band alignment in AlGaN/SiC, and suppressed the tunneling current via interface traps, resulting in an improved current gain of up to 2.7. Toward further improvement of current gain, we also investigated the effect of n-SiC spacer between n-AlGaN and p-SiC and p-SiC base width. Using 200-nm-thick n-SiC spacer and 250-nm-thick p-SiC base layer, we achieved an improved current gain of 13 owing to the reduced interface and bulk recombination.
doi_str_mv 10.1109/TED.2013.2273499
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27677402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6574301</ieee_id><sourcerecordid>27677402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e23e17e1e04c53978bc909af993c223bf659cf6e4d3fbcefaa58ed837ccb2ea73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUsuHrfN1242x1r7IZQqtJ7XbDrRlO3ukqQH_72Rlp6GYd7nhXkQeqRkRClR4-3sdcQI5SPGJBdKXaEBzXOZqUIU12hACC0zxUt-i-5C2Ke1EIIN0NekWej1eOOmeAkRfLc_tia6rsUvru8a7fHW6za4EDsf8Bx0PHrXfuNJsx4nEG9-Oh-zD_Cu2-HNsQff6BidATw7uJgK79GN1U2Ah_Mcos_5bDtdZqv3xdt0ssoMz1XMgHGgEigQYXKuZFkbRZS2SnHDGK9tkStjCxA7bmsDVuu8hF3JpTE1Ay35EJFTr_FdCB5s1Xt30P63oqT6N1QlQ9W_oepsKCHPJ6TXwejGpkeNCxeOyUJKQVjKPZ1yDgAu5yKXgqe6PzM1cIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter</title><source>IEEE Electronic Library (IEL)</source><creator>Miyake, Hiroki ; Kimoto, Tsunenobu ; Suda, Jun</creator><creatorcontrib>Miyake, Hiroki ; Kimoto, Tsunenobu ; Suda, Jun</creatorcontrib><description>Growth and electrical characterization of aluminum gallium nitride (AlGaN)/SiC heterojunction bipolar transistors (HBTs) featuring AlN/GaN short-period superlattice as a quasi-AlGaN emitter are presented. The AlN/GaN superlattice emitter was grown by molecular beam epitaxy on off-axis SiC, which showed adequate structural and electronic properties as the emitter of the HBTs. We investigated the impact of Al composition in the emitter on the transport characteristics and current gain of the HBTs. Using Al composition of over 0.5, we achieved type-I band alignment in AlGaN/SiC, and suppressed the tunneling current via interface traps, resulting in an improved current gain of up to 2.7. Toward further improvement of current gain, we also investigated the effect of n-SiC spacer between n-AlGaN and p-SiC and p-SiC base width. Using 200-nm-thick n-SiC spacer and 250-nm-thick p-SiC base layer, we achieved an improved current gain of 13 owing to the reduced interface and bulk recombination.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2013.2273499</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aluminum gallium nitride ; Aluminum gallium nitride (AlGaN) ; Applied sciences ; band offset ; Compound structure devices ; Cross-disciplinary physics: materials science; rheology ; current gain ; Electronics ; Exact sciences and technology ; Gallium nitride ; heterojunction bipolar transistor (HBT) ; Heterojunctions ; III-V semiconductor materials ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; molecular beam epitaxy (MBE) ; Molecular, atomic, ion, and chemical beam epitaxy ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon carbide ; silicon carbide (SiC) ; superlattice ; Superlattices ; Surface morphology ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2013-09, Vol.60 (9), p.2768-2775</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e23e17e1e04c53978bc909af993c223bf659cf6e4d3fbcefaa58ed837ccb2ea73</citedby><cites>FETCH-LOGICAL-c359t-e23e17e1e04c53978bc909af993c223bf659cf6e4d3fbcefaa58ed837ccb2ea73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6574301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6574301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27677402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Miyake, Hiroki</creatorcontrib><creatorcontrib>Kimoto, Tsunenobu</creatorcontrib><creatorcontrib>Suda, Jun</creatorcontrib><title>AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Growth and electrical characterization of aluminum gallium nitride (AlGaN)/SiC heterojunction bipolar transistors (HBTs) featuring AlN/GaN short-period superlattice as a quasi-AlGaN emitter are presented. The AlN/GaN superlattice emitter was grown by molecular beam epitaxy on off-axis SiC, which showed adequate structural and electronic properties as the emitter of the HBTs. We investigated the impact of Al composition in the emitter on the transport characteristics and current gain of the HBTs. Using Al composition of over 0.5, we achieved type-I band alignment in AlGaN/SiC, and suppressed the tunneling current via interface traps, resulting in an improved current gain of up to 2.7. Toward further improvement of current gain, we also investigated the effect of n-SiC spacer between n-AlGaN and p-SiC and p-SiC base width. Using 200-nm-thick n-SiC spacer and 250-nm-thick p-SiC base layer, we achieved an improved current gain of 13 owing to the reduced interface and bulk recombination.</description><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitride (AlGaN)</subject><subject>Applied sciences</subject><subject>band offset</subject><subject>Compound structure devices</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>current gain</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gallium nitride</subject><subject>heterojunction bipolar transistor (HBT)</subject><subject>Heterojunctions</subject><subject>III-V semiconductor materials</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>molecular beam epitaxy (MBE)</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC)</subject><subject>superlattice</subject><subject>Superlattices</subject><subject>Surface morphology</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUsuHrfN1242x1r7IZQqtJ7XbDrRlO3ukqQH_72Rlp6GYd7nhXkQeqRkRClR4-3sdcQI5SPGJBdKXaEBzXOZqUIU12hACC0zxUt-i-5C2Ke1EIIN0NekWej1eOOmeAkRfLc_tia6rsUvru8a7fHW6za4EDsf8Bx0PHrXfuNJsx4nEG9-Oh-zD_Cu2-HNsQff6BidATw7uJgK79GN1U2Ah_Mcos_5bDtdZqv3xdt0ssoMz1XMgHGgEigQYXKuZFkbRZS2SnHDGK9tkStjCxA7bmsDVuu8hF3JpTE1Ay35EJFTr_FdCB5s1Xt30P63oqT6N1QlQ9W_oepsKCHPJ6TXwejGpkeNCxeOyUJKQVjKPZ1yDgAu5yKXgqe6PzM1cIs</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Miyake, Hiroki</creator><creator>Kimoto, Tsunenobu</creator><creator>Suda, Jun</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130901</creationdate><title>AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter</title><author>Miyake, Hiroki ; Kimoto, Tsunenobu ; Suda, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e23e17e1e04c53978bc909af993c223bf659cf6e4d3fbcefaa58ed837ccb2ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitride (AlGaN)</topic><topic>Applied sciences</topic><topic>band offset</topic><topic>Compound structure devices</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>current gain</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gallium nitride</topic><topic>heterojunction bipolar transistor (HBT)</topic><topic>Heterojunctions</topic><topic>III-V semiconductor materials</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>molecular beam epitaxy (MBE)</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC)</topic><topic>superlattice</topic><topic>Superlattices</topic><topic>Surface morphology</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyake, Hiroki</creatorcontrib><creatorcontrib>Kimoto, Tsunenobu</creatorcontrib><creatorcontrib>Suda, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miyake, Hiroki</au><au>Kimoto, Tsunenobu</au><au>Suda, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>60</volume><issue>9</issue><spage>2768</spage><epage>2775</epage><pages>2768-2775</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Growth and electrical characterization of aluminum gallium nitride (AlGaN)/SiC heterojunction bipolar transistors (HBTs) featuring AlN/GaN short-period superlattice as a quasi-AlGaN emitter are presented. The AlN/GaN superlattice emitter was grown by molecular beam epitaxy on off-axis SiC, which showed adequate structural and electronic properties as the emitter of the HBTs. We investigated the impact of Al composition in the emitter on the transport characteristics and current gain of the HBTs. Using Al composition of over 0.5, we achieved type-I band alignment in AlGaN/SiC, and suppressed the tunneling current via interface traps, resulting in an improved current gain of up to 2.7. Toward further improvement of current gain, we also investigated the effect of n-SiC spacer between n-AlGaN and p-SiC and p-SiC base width. Using 200-nm-thick n-SiC spacer and 250-nm-thick p-SiC base layer, we achieved an improved current gain of 13 owing to the reduced interface and bulk recombination.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2013.2273499</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2013-09, Vol.60 (9), p.2768-2775
issn 0018-9383
1557-9646
language eng
recordid cdi_pascalfrancis_primary_27677402
source IEEE Electronic Library (IEL)
subjects Aluminum gallium nitride
Aluminum gallium nitride (AlGaN)
Applied sciences
band offset
Compound structure devices
Cross-disciplinary physics: materials science
rheology
current gain
Electronics
Exact sciences and technology
Gallium nitride
heterojunction bipolar transistor (HBT)
Heterojunctions
III-V semiconductor materials
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Microelectronic fabrication (materials and surfaces technology)
molecular beam epitaxy (MBE)
Molecular, atomic, ion, and chemical beam epitaxy
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon carbide
silicon carbide (SiC)
superlattice
Superlattices
Surface morphology
Transistors
title AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AlGaN/SiC%20Heterojunction%20Bipolar%20Transistors%20Featuring%20AlN/GaN%20Short-Period%20Superlattice%20Emitter&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Miyake,%20Hiroki&rft.date=2013-09-01&rft.volume=60&rft.issue=9&rft.spage=2768&rft.epage=2775&rft.pages=2768-2775&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2013.2273499&rft_dat=%3Cpascalfrancis_RIE%3E27677402%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6574301&rfr_iscdi=true