AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter
Growth and electrical characterization of aluminum gallium nitride (AlGaN)/SiC heterojunction bipolar transistors (HBTs) featuring AlN/GaN short-period superlattice as a quasi-AlGaN emitter are presented. The AlN/GaN superlattice emitter was grown by molecular beam epitaxy on off-axis SiC, which sho...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2013-09, Vol.60 (9), p.2768-2775 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2775 |
---|---|
container_issue | 9 |
container_start_page | 2768 |
container_title | IEEE transactions on electron devices |
container_volume | 60 |
creator | Miyake, Hiroki Kimoto, Tsunenobu Suda, Jun |
description | Growth and electrical characterization of aluminum gallium nitride (AlGaN)/SiC heterojunction bipolar transistors (HBTs) featuring AlN/GaN short-period superlattice as a quasi-AlGaN emitter are presented. The AlN/GaN superlattice emitter was grown by molecular beam epitaxy on off-axis SiC, which showed adequate structural and electronic properties as the emitter of the HBTs. We investigated the impact of Al composition in the emitter on the transport characteristics and current gain of the HBTs. Using Al composition of over 0.5, we achieved type-I band alignment in AlGaN/SiC, and suppressed the tunneling current via interface traps, resulting in an improved current gain of up to 2.7. Toward further improvement of current gain, we also investigated the effect of n-SiC spacer between n-AlGaN and p-SiC and p-SiC base width. Using 200-nm-thick n-SiC spacer and 250-nm-thick p-SiC base layer, we achieved an improved current gain of 13 owing to the reduced interface and bulk recombination. |
doi_str_mv | 10.1109/TED.2013.2273499 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27677402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6574301</ieee_id><sourcerecordid>27677402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e23e17e1e04c53978bc909af993c223bf659cf6e4d3fbcefaa58ed837ccb2ea73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUsuHrfN1242x1r7IZQqtJ7XbDrRlO3ukqQH_72Rlp6GYd7nhXkQeqRkRClR4-3sdcQI5SPGJBdKXaEBzXOZqUIU12hACC0zxUt-i-5C2Ke1EIIN0NekWej1eOOmeAkRfLc_tia6rsUvru8a7fHW6za4EDsf8Bx0PHrXfuNJsx4nEG9-Oh-zD_Cu2-HNsQff6BidATw7uJgK79GN1U2Ah_Mcos_5bDtdZqv3xdt0ssoMz1XMgHGgEigQYXKuZFkbRZS2SnHDGK9tkStjCxA7bmsDVuu8hF3JpTE1Ay35EJFTr_FdCB5s1Xt30P63oqT6N1QlQ9W_oepsKCHPJ6TXwejGpkeNCxeOyUJKQVjKPZ1yDgAu5yKXgqe6PzM1cIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter</title><source>IEEE Electronic Library (IEL)</source><creator>Miyake, Hiroki ; Kimoto, Tsunenobu ; Suda, Jun</creator><creatorcontrib>Miyake, Hiroki ; Kimoto, Tsunenobu ; Suda, Jun</creatorcontrib><description>Growth and electrical characterization of aluminum gallium nitride (AlGaN)/SiC heterojunction bipolar transistors (HBTs) featuring AlN/GaN short-period superlattice as a quasi-AlGaN emitter are presented. The AlN/GaN superlattice emitter was grown by molecular beam epitaxy on off-axis SiC, which showed adequate structural and electronic properties as the emitter of the HBTs. We investigated the impact of Al composition in the emitter on the transport characteristics and current gain of the HBTs. Using Al composition of over 0.5, we achieved type-I band alignment in AlGaN/SiC, and suppressed the tunneling current via interface traps, resulting in an improved current gain of up to 2.7. Toward further improvement of current gain, we also investigated the effect of n-SiC spacer between n-AlGaN and p-SiC and p-SiC base width. Using 200-nm-thick n-SiC spacer and 250-nm-thick p-SiC base layer, we achieved an improved current gain of 13 owing to the reduced interface and bulk recombination.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2013.2273499</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aluminum gallium nitride ; Aluminum gallium nitride (AlGaN) ; Applied sciences ; band offset ; Compound structure devices ; Cross-disciplinary physics: materials science; rheology ; current gain ; Electronics ; Exact sciences and technology ; Gallium nitride ; heterojunction bipolar transistor (HBT) ; Heterojunctions ; III-V semiconductor materials ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; molecular beam epitaxy (MBE) ; Molecular, atomic, ion, and chemical beam epitaxy ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon carbide ; silicon carbide (SiC) ; superlattice ; Superlattices ; Surface morphology ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2013-09, Vol.60 (9), p.2768-2775</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e23e17e1e04c53978bc909af993c223bf659cf6e4d3fbcefaa58ed837ccb2ea73</citedby><cites>FETCH-LOGICAL-c359t-e23e17e1e04c53978bc909af993c223bf659cf6e4d3fbcefaa58ed837ccb2ea73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6574301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6574301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27677402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Miyake, Hiroki</creatorcontrib><creatorcontrib>Kimoto, Tsunenobu</creatorcontrib><creatorcontrib>Suda, Jun</creatorcontrib><title>AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Growth and electrical characterization of aluminum gallium nitride (AlGaN)/SiC heterojunction bipolar transistors (HBTs) featuring AlN/GaN short-period superlattice as a quasi-AlGaN emitter are presented. The AlN/GaN superlattice emitter was grown by molecular beam epitaxy on off-axis SiC, which showed adequate structural and electronic properties as the emitter of the HBTs. We investigated the impact of Al composition in the emitter on the transport characteristics and current gain of the HBTs. Using Al composition of over 0.5, we achieved type-I band alignment in AlGaN/SiC, and suppressed the tunneling current via interface traps, resulting in an improved current gain of up to 2.7. Toward further improvement of current gain, we also investigated the effect of n-SiC spacer between n-AlGaN and p-SiC and p-SiC base width. Using 200-nm-thick n-SiC spacer and 250-nm-thick p-SiC base layer, we achieved an improved current gain of 13 owing to the reduced interface and bulk recombination.</description><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitride (AlGaN)</subject><subject>Applied sciences</subject><subject>band offset</subject><subject>Compound structure devices</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>current gain</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gallium nitride</subject><subject>heterojunction bipolar transistor (HBT)</subject><subject>Heterojunctions</subject><subject>III-V semiconductor materials</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>molecular beam epitaxy (MBE)</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC)</subject><subject>superlattice</subject><subject>Superlattices</subject><subject>Surface morphology</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUsuHrfN1242x1r7IZQqtJ7XbDrRlO3ukqQH_72Rlp6GYd7nhXkQeqRkRClR4-3sdcQI5SPGJBdKXaEBzXOZqUIU12hACC0zxUt-i-5C2Ke1EIIN0NekWej1eOOmeAkRfLc_tia6rsUvru8a7fHW6za4EDsf8Bx0PHrXfuNJsx4nEG9-Oh-zD_Cu2-HNsQff6BidATw7uJgK79GN1U2Ah_Mcos_5bDtdZqv3xdt0ssoMz1XMgHGgEigQYXKuZFkbRZS2SnHDGK9tkStjCxA7bmsDVuu8hF3JpTE1Ay35EJFTr_FdCB5s1Xt30P63oqT6N1QlQ9W_oepsKCHPJ6TXwejGpkeNCxeOyUJKQVjKPZ1yDgAu5yKXgqe6PzM1cIs</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Miyake, Hiroki</creator><creator>Kimoto, Tsunenobu</creator><creator>Suda, Jun</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130901</creationdate><title>AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter</title><author>Miyake, Hiroki ; Kimoto, Tsunenobu ; Suda, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e23e17e1e04c53978bc909af993c223bf659cf6e4d3fbcefaa58ed837ccb2ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitride (AlGaN)</topic><topic>Applied sciences</topic><topic>band offset</topic><topic>Compound structure devices</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>current gain</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gallium nitride</topic><topic>heterojunction bipolar transistor (HBT)</topic><topic>Heterojunctions</topic><topic>III-V semiconductor materials</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>molecular beam epitaxy (MBE)</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC)</topic><topic>superlattice</topic><topic>Superlattices</topic><topic>Surface morphology</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyake, Hiroki</creatorcontrib><creatorcontrib>Kimoto, Tsunenobu</creatorcontrib><creatorcontrib>Suda, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miyake, Hiroki</au><au>Kimoto, Tsunenobu</au><au>Suda, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>60</volume><issue>9</issue><spage>2768</spage><epage>2775</epage><pages>2768-2775</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Growth and electrical characterization of aluminum gallium nitride (AlGaN)/SiC heterojunction bipolar transistors (HBTs) featuring AlN/GaN short-period superlattice as a quasi-AlGaN emitter are presented. The AlN/GaN superlattice emitter was grown by molecular beam epitaxy on off-axis SiC, which showed adequate structural and electronic properties as the emitter of the HBTs. We investigated the impact of Al composition in the emitter on the transport characteristics and current gain of the HBTs. Using Al composition of over 0.5, we achieved type-I band alignment in AlGaN/SiC, and suppressed the tunneling current via interface traps, resulting in an improved current gain of up to 2.7. Toward further improvement of current gain, we also investigated the effect of n-SiC spacer between n-AlGaN and p-SiC and p-SiC base width. Using 200-nm-thick n-SiC spacer and 250-nm-thick p-SiC base layer, we achieved an improved current gain of 13 owing to the reduced interface and bulk recombination.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2013.2273499</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2013-09, Vol.60 (9), p.2768-2775 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_pascalfrancis_primary_27677402 |
source | IEEE Electronic Library (IEL) |
subjects | Aluminum gallium nitride Aluminum gallium nitride (AlGaN) Applied sciences band offset Compound structure devices Cross-disciplinary physics: materials science rheology current gain Electronics Exact sciences and technology Gallium nitride heterojunction bipolar transistor (HBT) Heterojunctions III-V semiconductor materials Materials science Methods of deposition of films and coatings film growth and epitaxy Microelectronic fabrication (materials and surfaces technology) molecular beam epitaxy (MBE) Molecular, atomic, ion, and chemical beam epitaxy Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon carbide silicon carbide (SiC) superlattice Superlattices Surface morphology Transistors |
title | AlGaN/SiC Heterojunction Bipolar Transistors Featuring AlN/GaN Short-Period Superlattice Emitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AlGaN/SiC%20Heterojunction%20Bipolar%20Transistors%20Featuring%20AlN/GaN%20Short-Period%20Superlattice%20Emitter&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Miyake,%20Hiroki&rft.date=2013-09-01&rft.volume=60&rft.issue=9&rft.spage=2768&rft.epage=2775&rft.pages=2768-2775&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2013.2273499&rft_dat=%3Cpascalfrancis_RIE%3E27677402%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6574301&rfr_iscdi=true |