Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis

The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2013-08, Vol.22 (8), p.3008-3017
Hauptverfasser: Hasegawa, M., Kako, T., Hirobayashi, S. H., Misawa, T., Yoshizawa, T., Inazumi, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3017
container_issue 8
container_start_page 3008
container_title IEEE transactions on image processing
container_volume 22
creator Hasegawa, M.
Kako, T.
Hirobayashi, S. H.
Misawa, T.
Yoshizawa, T.
Inazumi, Y.
description The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality.
doi_str_mv 10.1109/TIP.2013.2253475
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27599785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6490052</ieee_id><sourcerecordid>2984756901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-58e28384ce50cd714632a42603af6431cb97a79e7ee11e588993de52df21b9363</originalsourceid><addsrcrecordid>eNqNkc9LHDEUx0NRqrW9FwoSkIKX2ebl5-SottYFsS3a85DNvtGRmWRNZg7-9826WwVPnl7gfb5fXvgQ8hnYDIDZbzfz3zPOQMw4V0Ia9Y7sg5VQMSb5TnkzZSoD0u6RDznfMwZSgX5P9rhQ0ta13Sd_5oO7RToPK9eFsQu3NAY63iE9dbnLNLb0eoV-TK6n12Oa_DglpOcpDpRX3-lVDHcuDTF0np4E1z-WzEey27o-46ftPCB_z3_cnF1Ul79-zs9OLisvjR4rVSOvRS09KuaX5UgtuJNcM-FaLQX4hTXOWDSIAKjKsVYsUfFly2FhhRYH5HjTu0rxYcI8NkOXPfa9Cxin3IAwXCtpwLwBVdoqxY0q6NEr9D5OqXztiTKcC2DrQrahfIo5J2ybVeoGlx4bYM3aTFPMNGszzdZMiRxui6fFgMvnwH8VBfi6BVz2rm-TC77LL5xR1pp6XfRlw3WI-LzW0jKmuPgHGRmbZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357223107</pqid></control><display><type>article</type><title>Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis</title><source>IEEE Xplore</source><creator>Hasegawa, M. ; Kako, T. ; Hirobayashi, S. H. ; Misawa, T. ; Yoshizawa, T. ; Inazumi, Y.</creator><creatorcontrib>Hasegawa, M. ; Kako, T. ; Hirobayashi, S. H. ; Misawa, T. ; Yoshizawa, T. ; Inazumi, Y.</creatorcontrib><description>The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2253475</identifier><identifier>PMID: 23549889</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Exact sciences and technology ; Fourier transforms ; Image analysis ; Image Enhancement - methods ; image inpainting ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; interpolation ; nonharmonic analysis (NHA) ; Numerical Analysis, Computer-Assisted ; object removal ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Spectra ; Studies ; Surface layer ; Telecommunications and information theory ; Texture ; Transaction processing</subject><ispartof>IEEE transactions on image processing, 2013-08, Vol.22 (8), p.3008-3017</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-58e28384ce50cd714632a42603af6431cb97a79e7ee11e588993de52df21b9363</citedby><cites>FETCH-LOGICAL-c476t-58e28384ce50cd714632a42603af6431cb97a79e7ee11e588993de52df21b9363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6490052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6490052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27599785$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23549889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasegawa, M.</creatorcontrib><creatorcontrib>Kako, T.</creatorcontrib><creatorcontrib>Hirobayashi, S. H.</creatorcontrib><creatorcontrib>Misawa, T.</creatorcontrib><creatorcontrib>Yoshizawa, T.</creatorcontrib><creatorcontrib>Inazumi, Y.</creatorcontrib><title>Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Image analysis</subject><subject>Image Enhancement - methods</subject><subject>image inpainting</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>interpolation</subject><subject>nonharmonic analysis (NHA)</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>object removal</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spectra</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Telecommunications and information theory</subject><subject>Texture</subject><subject>Transaction processing</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9LHDEUx0NRqrW9FwoSkIKX2ebl5-SottYFsS3a85DNvtGRmWRNZg7-9826WwVPnl7gfb5fXvgQ8hnYDIDZbzfz3zPOQMw4V0Ia9Y7sg5VQMSb5TnkzZSoD0u6RDznfMwZSgX5P9rhQ0ta13Sd_5oO7RToPK9eFsQu3NAY63iE9dbnLNLb0eoV-TK6n12Oa_DglpOcpDpRX3-lVDHcuDTF0np4E1z-WzEey27o-46ftPCB_z3_cnF1Ul79-zs9OLisvjR4rVSOvRS09KuaX5UgtuJNcM-FaLQX4hTXOWDSIAKjKsVYsUfFly2FhhRYH5HjTu0rxYcI8NkOXPfa9Cxin3IAwXCtpwLwBVdoqxY0q6NEr9D5OqXztiTKcC2DrQrahfIo5J2ybVeoGlx4bYM3aTFPMNGszzdZMiRxui6fFgMvnwH8VBfi6BVz2rm-TC77LL5xR1pp6XfRlw3WI-LzW0jKmuPgHGRmbZA</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Hasegawa, M.</creator><creator>Kako, T.</creator><creator>Hirobayashi, S. H.</creator><creator>Misawa, T.</creator><creator>Yoshizawa, T.</creator><creator>Inazumi, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130801</creationdate><title>Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis</title><author>Hasegawa, M. ; Kako, T. ; Hirobayashi, S. H. ; Misawa, T. ; Yoshizawa, T. ; Inazumi, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-58e28384ce50cd714632a42603af6431cb97a79e7ee11e588993de52df21b9363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Image analysis</topic><topic>Image Enhancement - methods</topic><topic>image inpainting</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>interpolation</topic><topic>nonharmonic analysis (NHA)</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>object removal</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spectra</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Telecommunications and information theory</topic><topic>Texture</topic><topic>Transaction processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasegawa, M.</creatorcontrib><creatorcontrib>Kako, T.</creatorcontrib><creatorcontrib>Hirobayashi, S. H.</creatorcontrib><creatorcontrib>Misawa, T.</creatorcontrib><creatorcontrib>Yoshizawa, T.</creatorcontrib><creatorcontrib>Inazumi, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hasegawa, M.</au><au>Kako, T.</au><au>Hirobayashi, S. H.</au><au>Misawa, T.</au><au>Yoshizawa, T.</au><au>Inazumi, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>22</volume><issue>8</issue><spage>3008</spage><epage>3017</epage><pages>3008-3017</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23549889</pmid><doi>10.1109/TIP.2013.2253475</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2013-08, Vol.22 (8), p.3008-3017
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_27599785
source IEEE Xplore
subjects Algorithms
Applied sciences
Exact sciences and technology
Fourier transforms
Image analysis
Image Enhancement - methods
image inpainting
Image Interpretation, Computer-Assisted - methods
Image processing
Information, signal and communications theory
interpolation
nonharmonic analysis (NHA)
Numerical Analysis, Computer-Assisted
object removal
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Spectra
Studies
Surface layer
Telecommunications and information theory
Texture
Transaction processing
title Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Inpainting%20on%20the%20Basis%20of%20Spectral%20Structure%20From%202-D%20Nonharmonic%20Analysis&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Hasegawa,%20M.&rft.date=2013-08-01&rft.volume=22&rft.issue=8&rft.spage=3008&rft.epage=3017&rft.pages=3008-3017&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2253475&rft_dat=%3Cproquest_RIE%3E2984756901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357223107&rft_id=info:pmid/23549889&rft_ieee_id=6490052&rfr_iscdi=true