Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis
The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2013-08, Vol.22 (8), p.3008-3017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3017 |
---|---|
container_issue | 8 |
container_start_page | 3008 |
container_title | IEEE transactions on image processing |
container_volume | 22 |
creator | Hasegawa, M. Kako, T. Hirobayashi, S. H. Misawa, T. Yoshizawa, T. Inazumi, Y. |
description | The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality. |
doi_str_mv | 10.1109/TIP.2013.2253475 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27599785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6490052</ieee_id><sourcerecordid>2984756901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-58e28384ce50cd714632a42603af6431cb97a79e7ee11e588993de52df21b9363</originalsourceid><addsrcrecordid>eNqNkc9LHDEUx0NRqrW9FwoSkIKX2ebl5-SottYFsS3a85DNvtGRmWRNZg7-9826WwVPnl7gfb5fXvgQ8hnYDIDZbzfz3zPOQMw4V0Ia9Y7sg5VQMSb5TnkzZSoD0u6RDznfMwZSgX5P9rhQ0ta13Sd_5oO7RToPK9eFsQu3NAY63iE9dbnLNLb0eoV-TK6n12Oa_DglpOcpDpRX3-lVDHcuDTF0np4E1z-WzEey27o-46ftPCB_z3_cnF1Ul79-zs9OLisvjR4rVSOvRS09KuaX5UgtuJNcM-FaLQX4hTXOWDSIAKjKsVYsUfFly2FhhRYH5HjTu0rxYcI8NkOXPfa9Cxin3IAwXCtpwLwBVdoqxY0q6NEr9D5OqXztiTKcC2DrQrahfIo5J2ybVeoGlx4bYM3aTFPMNGszzdZMiRxui6fFgMvnwH8VBfi6BVz2rm-TC77LL5xR1pp6XfRlw3WI-LzW0jKmuPgHGRmbZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357223107</pqid></control><display><type>article</type><title>Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis</title><source>IEEE Xplore</source><creator>Hasegawa, M. ; Kako, T. ; Hirobayashi, S. H. ; Misawa, T. ; Yoshizawa, T. ; Inazumi, Y.</creator><creatorcontrib>Hasegawa, M. ; Kako, T. ; Hirobayashi, S. H. ; Misawa, T. ; Yoshizawa, T. ; Inazumi, Y.</creatorcontrib><description>The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2253475</identifier><identifier>PMID: 23549889</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Exact sciences and technology ; Fourier transforms ; Image analysis ; Image Enhancement - methods ; image inpainting ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; interpolation ; nonharmonic analysis (NHA) ; Numerical Analysis, Computer-Assisted ; object removal ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Spectra ; Studies ; Surface layer ; Telecommunications and information theory ; Texture ; Transaction processing</subject><ispartof>IEEE transactions on image processing, 2013-08, Vol.22 (8), p.3008-3017</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-58e28384ce50cd714632a42603af6431cb97a79e7ee11e588993de52df21b9363</citedby><cites>FETCH-LOGICAL-c476t-58e28384ce50cd714632a42603af6431cb97a79e7ee11e588993de52df21b9363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6490052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6490052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27599785$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23549889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasegawa, M.</creatorcontrib><creatorcontrib>Kako, T.</creatorcontrib><creatorcontrib>Hirobayashi, S. H.</creatorcontrib><creatorcontrib>Misawa, T.</creatorcontrib><creatorcontrib>Yoshizawa, T.</creatorcontrib><creatorcontrib>Inazumi, Y.</creatorcontrib><title>Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Image analysis</subject><subject>Image Enhancement - methods</subject><subject>image inpainting</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>interpolation</subject><subject>nonharmonic analysis (NHA)</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>object removal</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spectra</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Telecommunications and information theory</subject><subject>Texture</subject><subject>Transaction processing</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9LHDEUx0NRqrW9FwoSkIKX2ebl5-SottYFsS3a85DNvtGRmWRNZg7-9826WwVPnl7gfb5fXvgQ8hnYDIDZbzfz3zPOQMw4V0Ia9Y7sg5VQMSb5TnkzZSoD0u6RDznfMwZSgX5P9rhQ0ta13Sd_5oO7RToPK9eFsQu3NAY63iE9dbnLNLb0eoV-TK6n12Oa_DglpOcpDpRX3-lVDHcuDTF0np4E1z-WzEey27o-46ftPCB_z3_cnF1Ul79-zs9OLisvjR4rVSOvRS09KuaX5UgtuJNcM-FaLQX4hTXOWDSIAKjKsVYsUfFly2FhhRYH5HjTu0rxYcI8NkOXPfa9Cxin3IAwXCtpwLwBVdoqxY0q6NEr9D5OqXztiTKcC2DrQrahfIo5J2ybVeoGlx4bYM3aTFPMNGszzdZMiRxui6fFgMvnwH8VBfi6BVz2rm-TC77LL5xR1pp6XfRlw3WI-LzW0jKmuPgHGRmbZA</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Hasegawa, M.</creator><creator>Kako, T.</creator><creator>Hirobayashi, S. H.</creator><creator>Misawa, T.</creator><creator>Yoshizawa, T.</creator><creator>Inazumi, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130801</creationdate><title>Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis</title><author>Hasegawa, M. ; Kako, T. ; Hirobayashi, S. H. ; Misawa, T. ; Yoshizawa, T. ; Inazumi, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-58e28384ce50cd714632a42603af6431cb97a79e7ee11e588993de52df21b9363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Image analysis</topic><topic>Image Enhancement - methods</topic><topic>image inpainting</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>interpolation</topic><topic>nonharmonic analysis (NHA)</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>object removal</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spectra</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Telecommunications and information theory</topic><topic>Texture</topic><topic>Transaction processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasegawa, M.</creatorcontrib><creatorcontrib>Kako, T.</creatorcontrib><creatorcontrib>Hirobayashi, S. H.</creatorcontrib><creatorcontrib>Misawa, T.</creatorcontrib><creatorcontrib>Yoshizawa, T.</creatorcontrib><creatorcontrib>Inazumi, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hasegawa, M.</au><au>Kako, T.</au><au>Hirobayashi, S. H.</au><au>Misawa, T.</au><au>Yoshizawa, T.</au><au>Inazumi, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>22</volume><issue>8</issue><spage>3008</spage><epage>3017</epage><pages>3008-3017</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23549889</pmid><doi>10.1109/TIP.2013.2253475</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2013-08, Vol.22 (8), p.3008-3017 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_27599785 |
source | IEEE Xplore |
subjects | Algorithms Applied sciences Exact sciences and technology Fourier transforms Image analysis Image Enhancement - methods image inpainting Image Interpretation, Computer-Assisted - methods Image processing Information, signal and communications theory interpolation nonharmonic analysis (NHA) Numerical Analysis, Computer-Assisted object removal Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Spectra Studies Surface layer Telecommunications and information theory Texture Transaction processing |
title | Image Inpainting on the Basis of Spectral Structure From 2-D Nonharmonic Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Inpainting%20on%20the%20Basis%20of%20Spectral%20Structure%20From%202-D%20Nonharmonic%20Analysis&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Hasegawa,%20M.&rft.date=2013-08-01&rft.volume=22&rft.issue=8&rft.spage=3008&rft.epage=3017&rft.pages=3008-3017&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2253475&rft_dat=%3Cproquest_RIE%3E2984756901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357223107&rft_id=info:pmid/23549889&rft_ieee_id=6490052&rfr_iscdi=true |