Effects of the LLL Reduction on the Success Probability of the Babai Point and on the Complexity of Sphere Decoding
A common method to estimate an unknown integer parameter vector in a linear model is to solve an integer least squares (ILS) problem. A typical approach to solving an ILS problem is sphere decoding. To make a sphere decoder faster, the well-known LLL reduction is often used as preprocessing. The Bab...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2013-08, Vol.59 (8), p.4915-4926 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4926 |
---|---|
container_issue | 8 |
container_start_page | 4915 |
container_title | IEEE transactions on information theory |
container_volume | 59 |
creator | Chang, X-W Wen, J Xie, X |
description | A common method to estimate an unknown integer parameter vector in a linear model is to solve an integer least squares (ILS) problem. A typical approach to solving an ILS problem is sphere decoding. To make a sphere decoder faster, the well-known LLL reduction is often used as preprocessing. The Babai point produced by the Babai nearest plane algorithm is a suboptimal solution of the ILS problem. First, we prove that the success probability of the Babai point as a lower bound on the success probability of the ILS estimator is sharper than the lower bound given by Hassibi and Boyd [1]. Then, we show rigorously that applying the LLL reduction algorithm will increase the success probability of the Babai point and give some theoretical and numerical test results. We give examples to show that unlike LLL's column permutation strategy, two often used column permutation strategies SQRD and V-BLAST may decrease the success probability of the Babai point. Finally, we show rigorously that applying the LLL reduction algorithm will also reduce the computational complexity of sphere decoders, which is measured approximately by the number of nodes in the search tree in the literature. |
doi_str_mv | 10.1109/TIT.2013.2253596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27599400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6544661</ieee_id><sourcerecordid>3022411651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-1305688b5621a76e78242b1ce3407b69c69674f4a45696f0e7a3eeb6f8356eed3</originalsourceid><addsrcrecordid>eNo9kd1LwzAUxYMoOKfvgi8B8bEzaT7aPuqcOig43HwuaXrjMrZmJi24_96MbcKF5Ca_cy6ci9AtJSNKSfG4mC5GKaFslKaCiUKeoQEVIksKKfg5GhBC86TgPL9EVyGsYssFTQcoTIwB3QXsDO6WgMuyxJ_Q9LqzrsWx9o_zXmsIAc-8q1Vt17bbnfhnVSuLZ862HVZtc1KM3Wa7ht8jON8uwQN-Ae0a235fowuj1gFujucQfb1OFuP3pPx4m46fykQzybqEMiJkntdCplRlErI85WlNNTBOsloWWhYy44YrLuLNEMgUA6ilyZmQAA0bovuD79a7nx5CV61c79s4sqKckIwxKmSkyIHS3oXgwVRbbzfK7ypKqn20VYy22kdbHaONkoejsQparY1XrbbhX5dmoijigMjdHTgLAP_fcSFcSsr-ABm7gEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400733156</pqid></control><display><type>article</type><title>Effects of the LLL Reduction on the Success Probability of the Babai Point and on the Complexity of Sphere Decoding</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, X-W ; Wen, J ; Xie, X</creator><creatorcontrib>Chang, X-W ; Wen, J ; Xie, X</creatorcontrib><description>A common method to estimate an unknown integer parameter vector in a linear model is to solve an integer least squares (ILS) problem. A typical approach to solving an ILS problem is sphere decoding. To make a sphere decoder faster, the well-known LLL reduction is often used as preprocessing. The Babai point produced by the Babai nearest plane algorithm is a suboptimal solution of the ILS problem. First, we prove that the success probability of the Babai point as a lower bound on the success probability of the ILS estimator is sharper than the lower bound given by Hassibi and Boyd [1]. Then, we show rigorously that applying the LLL reduction algorithm will increase the success probability of the Babai point and give some theoretical and numerical test results. We give examples to show that unlike LLL's column permutation strategy, two often used column permutation strategies SQRD and V-BLAST may decrease the success probability of the Babai point. Finally, we show rigorously that applying the LLL reduction algorithm will also reduce the computational complexity of sphere decoders, which is measured approximately by the number of nodes in the search tree in the literature.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2013.2253596</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation algorithms ; Babai point ; Coding theory ; Coding, codes ; complexity ; Complexity theory ; Detection, estimation, filtering, equalization, prediction ; Effects ; Exact sciences and technology ; Information theory ; Information, signal and communications theory ; integer least squares (ILS) problem ; Least squares approximations ; LLL reduction ; Maximum likelihood decoding ; Probability ; Signal and communications theory ; Signal, noise ; sphere decoding ; Success ; success probability ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on information theory, 2013-08, Vol.59 (8), p.4915-4926</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-1305688b5621a76e78242b1ce3407b69c69674f4a45696f0e7a3eeb6f8356eed3</citedby><cites>FETCH-LOGICAL-c363t-1305688b5621a76e78242b1ce3407b69c69674f4a45696f0e7a3eeb6f8356eed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6544661$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6544661$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27599400$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, X-W</creatorcontrib><creatorcontrib>Wen, J</creatorcontrib><creatorcontrib>Xie, X</creatorcontrib><title>Effects of the LLL Reduction on the Success Probability of the Babai Point and on the Complexity of Sphere Decoding</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A common method to estimate an unknown integer parameter vector in a linear model is to solve an integer least squares (ILS) problem. A typical approach to solving an ILS problem is sphere decoding. To make a sphere decoder faster, the well-known LLL reduction is often used as preprocessing. The Babai point produced by the Babai nearest plane algorithm is a suboptimal solution of the ILS problem. First, we prove that the success probability of the Babai point as a lower bound on the success probability of the ILS estimator is sharper than the lower bound given by Hassibi and Boyd [1]. Then, we show rigorously that applying the LLL reduction algorithm will increase the success probability of the Babai point and give some theoretical and numerical test results. We give examples to show that unlike LLL's column permutation strategy, two often used column permutation strategies SQRD and V-BLAST may decrease the success probability of the Babai point. Finally, we show rigorously that applying the LLL reduction algorithm will also reduce the computational complexity of sphere decoders, which is measured approximately by the number of nodes in the search tree in the literature.</description><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Babai point</subject><subject>Coding theory</subject><subject>Coding, codes</subject><subject>complexity</subject><subject>Complexity theory</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Effects</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>integer least squares (ILS) problem</subject><subject>Least squares approximations</subject><subject>LLL reduction</subject><subject>Maximum likelihood decoding</subject><subject>Probability</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>sphere decoding</subject><subject>Success</subject><subject>success probability</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kd1LwzAUxYMoOKfvgi8B8bEzaT7aPuqcOig43HwuaXrjMrZmJi24_96MbcKF5Ca_cy6ci9AtJSNKSfG4mC5GKaFslKaCiUKeoQEVIksKKfg5GhBC86TgPL9EVyGsYssFTQcoTIwB3QXsDO6WgMuyxJ_Q9LqzrsWx9o_zXmsIAc-8q1Vt17bbnfhnVSuLZ862HVZtc1KM3Wa7ht8jON8uwQN-Ae0a235fowuj1gFujucQfb1OFuP3pPx4m46fykQzybqEMiJkntdCplRlErI85WlNNTBOsloWWhYy44YrLuLNEMgUA6ilyZmQAA0bovuD79a7nx5CV61c79s4sqKckIwxKmSkyIHS3oXgwVRbbzfK7ypKqn20VYy22kdbHaONkoejsQparY1XrbbhX5dmoijigMjdHTgLAP_fcSFcSsr-ABm7gEY</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Chang, X-W</creator><creator>Wen, J</creator><creator>Xie, X</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130801</creationdate><title>Effects of the LLL Reduction on the Success Probability of the Babai Point and on the Complexity of Sphere Decoding</title><author>Chang, X-W ; Wen, J ; Xie, X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-1305688b5621a76e78242b1ce3407b69c69674f4a45696f0e7a3eeb6f8356eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Babai point</topic><topic>Coding theory</topic><topic>Coding, codes</topic><topic>complexity</topic><topic>Complexity theory</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Effects</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>integer least squares (ILS) problem</topic><topic>Least squares approximations</topic><topic>LLL reduction</topic><topic>Maximum likelihood decoding</topic><topic>Probability</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>sphere decoding</topic><topic>Success</topic><topic>success probability</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, X-W</creatorcontrib><creatorcontrib>Wen, J</creatorcontrib><creatorcontrib>Xie, X</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, X-W</au><au>Wen, J</au><au>Xie, X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of the LLL Reduction on the Success Probability of the Babai Point and on the Complexity of Sphere Decoding</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>59</volume><issue>8</issue><spage>4915</spage><epage>4926</epage><pages>4915-4926</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A common method to estimate an unknown integer parameter vector in a linear model is to solve an integer least squares (ILS) problem. A typical approach to solving an ILS problem is sphere decoding. To make a sphere decoder faster, the well-known LLL reduction is often used as preprocessing. The Babai point produced by the Babai nearest plane algorithm is a suboptimal solution of the ILS problem. First, we prove that the success probability of the Babai point as a lower bound on the success probability of the ILS estimator is sharper than the lower bound given by Hassibi and Boyd [1]. Then, we show rigorously that applying the LLL reduction algorithm will increase the success probability of the Babai point and give some theoretical and numerical test results. We give examples to show that unlike LLL's column permutation strategy, two often used column permutation strategies SQRD and V-BLAST may decrease the success probability of the Babai point. Finally, we show rigorously that applying the LLL reduction algorithm will also reduce the computational complexity of sphere decoders, which is measured approximately by the number of nodes in the search tree in the literature.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2013.2253596</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2013-08, Vol.59 (8), p.4915-4926 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_pascalfrancis_primary_27599400 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Approximation algorithms Babai point Coding theory Coding, codes complexity Complexity theory Detection, estimation, filtering, equalization, prediction Effects Exact sciences and technology Information theory Information, signal and communications theory integer least squares (ILS) problem Least squares approximations LLL reduction Maximum likelihood decoding Probability Signal and communications theory Signal, noise sphere decoding Success success probability Telecommunications and information theory Vectors |
title | Effects of the LLL Reduction on the Success Probability of the Babai Point and on the Complexity of Sphere Decoding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20the%20LLL%20Reduction%20on%20the%20Success%20Probability%20of%20the%20Babai%20Point%20and%20on%20the%20Complexity%20of%20Sphere%20Decoding&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Chang,%20X-W&rft.date=2013-08-01&rft.volume=59&rft.issue=8&rft.spage=4915&rft.epage=4926&rft.pages=4915-4926&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2013.2253596&rft_dat=%3Cproquest_RIE%3E3022411651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400733156&rft_id=info:pmid/&rft_ieee_id=6544661&rfr_iscdi=true |