Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI

This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3 dopa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-07, Vol.110 (27), p.11169-11174
Hauptverfasser: Sander, Christin Y., Hooker, Jacob M., Catana, Ciprian, Normandin, Marc D., Alpert, Nathaniel M., Knudsen, Gitte M., Vanduffel, Wim, Rosen, Bruce R., Mandeville, Joseph B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11174
container_issue 27
container_start_page 11169
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Sander, Christin Y.
Hooker, Jacob M.
Catana, Ciprian
Normandin, Marc D.
Alpert, Nathaniel M.
Knudsen, Gitte M.
Vanduffel, Wim
Rosen, Bruce R.
Mandeville, Joseph B.
description This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3 dopamine receptor antagonist [ ¹¹C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular responses and receptor occupancies. The distinct CBV magnitudes between putamen and caudate at matched occupancies approximately matched literature differences in basal dopamine levels, suggesting that the relative fMRI measurements reflect basal D2/D3 dopamine receptor occupancy. These results can provide a basis for models that relate dopaminergic occupancies to hemodynamic changes in the basal ganglia. Overall, these data demonstrate the utility of simultaneous PET/fMRI for investigations of neurovascular coupling that correlate neurochemistry with hemodynamic changes in vivo for any receptor system with an available PET tracer.
doi_str_mv 10.1073/pnas.1220512110
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27566526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42706393</jstor_id><sourcerecordid>42706393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-5618e9e1b802f4f5dc48b51d7fc9456b49e3418f898cf21f79ad4cef20d60af63</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEoqVw5gREQkhctjvjz_iChNoClcqHoD1bXsdessrGwY4r9d_jaJctcPJhnpnXr56qeo5wiiDpchxMOkVCgCNBhAfVMYLChWAKHlbHAEQuGkbYUfUkpQ0AKN7A4-qIUEkoZeK4Ml9cjuHWJJt7E2sb8th3w7qeQn1Olue0bsNott3g6uisG6cQ62BtHs1g7-qcZjR129xPZnAhp_rbxfXS58FOXRhMX3_-fvm0euRNn9yz_XtS3Xy4uD77tLj6-vHy7P3VwnLOpwUX2DjlcNUA8czz1rJmxbGV3irGxYopRxk2vlGN9QS9VKZl1nkCrQDjBT2p3u3ujnm1da11wxRNr8fYbU2808F0-t_J0P3U63CrqQSqhCoH3u4PxPAruzTpbZes6_tdNY0NUEQUBAr6-j90E3IshQtFlUIlEUihljvKxpBSdP7wGQQ969OzPn2vr2y8_LvDgf_jqwBv9kAxZnofi4cu3XOSC8HJzNV7bk44xJZcIvVcYq77YodsUrF6YBiRIKiiZf5qN_cmaLOOJebmBwEUAEglJ5z-BuDUwQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399197102</pqid></control><display><type>article</type><title>Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sander, Christin Y. ; Hooker, Jacob M. ; Catana, Ciprian ; Normandin, Marc D. ; Alpert, Nathaniel M. ; Knudsen, Gitte M. ; Vanduffel, Wim ; Rosen, Bruce R. ; Mandeville, Joseph B.</creator><creatorcontrib>Sander, Christin Y. ; Hooker, Jacob M. ; Catana, Ciprian ; Normandin, Marc D. ; Alpert, Nathaniel M. ; Knudsen, Gitte M. ; Vanduffel, Wim ; Rosen, Bruce R. ; Mandeville, Joseph B.</creatorcontrib><description>This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3 dopamine receptor antagonist [ ¹¹C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular responses and receptor occupancies. The distinct CBV magnitudes between putamen and caudate at matched occupancies approximately matched literature differences in basal dopamine levels, suggesting that the relative fMRI measurements reflect basal D2/D3 dopamine receptor occupancy. These results can provide a basis for models that relate dopaminergic occupancies to hemodynamic changes in the basal ganglia. Overall, these data demonstrate the utility of simultaneous PET/fMRI for investigations of neurovascular coupling that correlate neurochemistry with hemodynamic changes in vivo for any receptor system with an available PET tracer.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1220512110</identifier><identifier>PMID: 23723346</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences</publisher><subject>Animals ; antagonists ; Binding sites ; Biological and medical sciences ; Biological Sciences ; blood volume ; Brain ; Brain - blood supply ; Brain - drug effects ; Brain - metabolism ; Cerebellum ; Cerebrovascular Circulation - drug effects ; Dopamine ; Dopamine Antagonists - administration &amp; dosage ; Dopamine Antagonists - pharmacokinetics ; Dopamine D2 Receptor Antagonists ; dopamine receptors ; Dosage ; Fundamental and applied biological sciences. Psychology ; ganglia ; Imaging ; Ligands ; Macaca mulatta ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Models, Neurological ; Neurochemistry ; Neurotransmitters ; NMR ; Nuclear magnetic resonance ; Pharmacology ; Positron emission tomography ; Positron-Emission Tomography - methods ; Primates ; Putamen ; Raclopride - administration &amp; dosage ; Raclopride - pharmacokinetics ; Receptors ; Receptors, Dopamine D2 - metabolism ; Receptors, Dopamine D3 - antagonists &amp; inhibitors ; Receptors, Dopamine D3 - metabolism ; Tomography ; Vertebrates: nervous system and sense organs</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (27), p.11169-11174</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>2014 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Jul 2, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-5618e9e1b802f4f5dc48b51d7fc9456b49e3418f898cf21f79ad4cef20d60af63</citedby><cites>FETCH-LOGICAL-c555t-5618e9e1b802f4f5dc48b51d7fc9456b49e3418f898cf21f79ad4cef20d60af63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42706393$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42706393$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27566526$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23723346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sander, Christin Y.</creatorcontrib><creatorcontrib>Hooker, Jacob M.</creatorcontrib><creatorcontrib>Catana, Ciprian</creatorcontrib><creatorcontrib>Normandin, Marc D.</creatorcontrib><creatorcontrib>Alpert, Nathaniel M.</creatorcontrib><creatorcontrib>Knudsen, Gitte M.</creatorcontrib><creatorcontrib>Vanduffel, Wim</creatorcontrib><creatorcontrib>Rosen, Bruce R.</creatorcontrib><creatorcontrib>Mandeville, Joseph B.</creatorcontrib><title>Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3 dopamine receptor antagonist [ ¹¹C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular responses and receptor occupancies. The distinct CBV magnitudes between putamen and caudate at matched occupancies approximately matched literature differences in basal dopamine levels, suggesting that the relative fMRI measurements reflect basal D2/D3 dopamine receptor occupancy. These results can provide a basis for models that relate dopaminergic occupancies to hemodynamic changes in the basal ganglia. Overall, these data demonstrate the utility of simultaneous PET/fMRI for investigations of neurovascular coupling that correlate neurochemistry with hemodynamic changes in vivo for any receptor system with an available PET tracer.</description><subject>Animals</subject><subject>antagonists</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Biological Sciences</subject><subject>blood volume</subject><subject>Brain</subject><subject>Brain - blood supply</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Cerebellum</subject><subject>Cerebrovascular Circulation - drug effects</subject><subject>Dopamine</subject><subject>Dopamine Antagonists - administration &amp; dosage</subject><subject>Dopamine Antagonists - pharmacokinetics</subject><subject>Dopamine D2 Receptor Antagonists</subject><subject>dopamine receptors</subject><subject>Dosage</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>ganglia</subject><subject>Imaging</subject><subject>Ligands</subject><subject>Macaca mulatta</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Neurochemistry</subject><subject>Neurotransmitters</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pharmacology</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Primates</subject><subject>Putamen</subject><subject>Raclopride - administration &amp; dosage</subject><subject>Raclopride - pharmacokinetics</subject><subject>Receptors</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>Receptors, Dopamine D3 - antagonists &amp; inhibitors</subject><subject>Receptors, Dopamine D3 - metabolism</subject><subject>Tomography</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhiMEoqVw5gREQkhctjvjz_iChNoClcqHoD1bXsdessrGwY4r9d_jaJctcPJhnpnXr56qeo5wiiDpchxMOkVCgCNBhAfVMYLChWAKHlbHAEQuGkbYUfUkpQ0AKN7A4-qIUEkoZeK4Ml9cjuHWJJt7E2sb8th3w7qeQn1Olue0bsNott3g6uisG6cQ62BtHs1g7-qcZjR129xPZnAhp_rbxfXS58FOXRhMX3_-fvm0euRNn9yz_XtS3Xy4uD77tLj6-vHy7P3VwnLOpwUX2DjlcNUA8czz1rJmxbGV3irGxYopRxk2vlGN9QS9VKZl1nkCrQDjBT2p3u3ujnm1da11wxRNr8fYbU2808F0-t_J0P3U63CrqQSqhCoH3u4PxPAruzTpbZes6_tdNY0NUEQUBAr6-j90E3IshQtFlUIlEUihljvKxpBSdP7wGQQ969OzPn2vr2y8_LvDgf_jqwBv9kAxZnofi4cu3XOSC8HJzNV7bk44xJZcIvVcYq77YodsUrF6YBiRIKiiZf5qN_cmaLOOJebmBwEUAEglJ5z-BuDUwQU</recordid><startdate>20130702</startdate><enddate>20130702</enddate><creator>Sander, Christin Y.</creator><creator>Hooker, Jacob M.</creator><creator>Catana, Ciprian</creator><creator>Normandin, Marc D.</creator><creator>Alpert, Nathaniel M.</creator><creator>Knudsen, Gitte M.</creator><creator>Vanduffel, Wim</creator><creator>Rosen, Bruce R.</creator><creator>Mandeville, Joseph B.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130702</creationdate><title>Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI</title><author>Sander, Christin Y. ; Hooker, Jacob M. ; Catana, Ciprian ; Normandin, Marc D. ; Alpert, Nathaniel M. ; Knudsen, Gitte M. ; Vanduffel, Wim ; Rosen, Bruce R. ; Mandeville, Joseph B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-5618e9e1b802f4f5dc48b51d7fc9456b49e3418f898cf21f79ad4cef20d60af63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>antagonists</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Biological Sciences</topic><topic>blood volume</topic><topic>Brain</topic><topic>Brain - blood supply</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Cerebellum</topic><topic>Cerebrovascular Circulation - drug effects</topic><topic>Dopamine</topic><topic>Dopamine Antagonists - administration &amp; dosage</topic><topic>Dopamine Antagonists - pharmacokinetics</topic><topic>Dopamine D2 Receptor Antagonists</topic><topic>dopamine receptors</topic><topic>Dosage</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>ganglia</topic><topic>Imaging</topic><topic>Ligands</topic><topic>Macaca mulatta</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Neurochemistry</topic><topic>Neurotransmitters</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pharmacology</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Primates</topic><topic>Putamen</topic><topic>Raclopride - administration &amp; dosage</topic><topic>Raclopride - pharmacokinetics</topic><topic>Receptors</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>Receptors, Dopamine D3 - antagonists &amp; inhibitors</topic><topic>Receptors, Dopamine D3 - metabolism</topic><topic>Tomography</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sander, Christin Y.</creatorcontrib><creatorcontrib>Hooker, Jacob M.</creatorcontrib><creatorcontrib>Catana, Ciprian</creatorcontrib><creatorcontrib>Normandin, Marc D.</creatorcontrib><creatorcontrib>Alpert, Nathaniel M.</creatorcontrib><creatorcontrib>Knudsen, Gitte M.</creatorcontrib><creatorcontrib>Vanduffel, Wim</creatorcontrib><creatorcontrib>Rosen, Bruce R.</creatorcontrib><creatorcontrib>Mandeville, Joseph B.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sander, Christin Y.</au><au>Hooker, Jacob M.</au><au>Catana, Ciprian</au><au>Normandin, Marc D.</au><au>Alpert, Nathaniel M.</au><au>Knudsen, Gitte M.</au><au>Vanduffel, Wim</au><au>Rosen, Bruce R.</au><au>Mandeville, Joseph B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-07-02</date><risdate>2013</risdate><volume>110</volume><issue>27</issue><spage>11169</spage><epage>11174</epage><pages>11169-11174</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3 dopamine receptor antagonist [ ¹¹C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular responses and receptor occupancies. The distinct CBV magnitudes between putamen and caudate at matched occupancies approximately matched literature differences in basal dopamine levels, suggesting that the relative fMRI measurements reflect basal D2/D3 dopamine receptor occupancy. These results can provide a basis for models that relate dopaminergic occupancies to hemodynamic changes in the basal ganglia. Overall, these data demonstrate the utility of simultaneous PET/fMRI for investigations of neurovascular coupling that correlate neurochemistry with hemodynamic changes in vivo for any receptor system with an available PET tracer.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences</pub><pmid>23723346</pmid><doi>10.1073/pnas.1220512110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (27), p.11169-11174
issn 0027-8424
1091-6490
language eng
recordid cdi_pascalfrancis_primary_27566526
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
antagonists
Binding sites
Biological and medical sciences
Biological Sciences
blood volume
Brain
Brain - blood supply
Brain - drug effects
Brain - metabolism
Cerebellum
Cerebrovascular Circulation - drug effects
Dopamine
Dopamine Antagonists - administration & dosage
Dopamine Antagonists - pharmacokinetics
Dopamine D2 Receptor Antagonists
dopamine receptors
Dosage
Fundamental and applied biological sciences. Psychology
ganglia
Imaging
Ligands
Macaca mulatta
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Models, Neurological
Neurochemistry
Neurotransmitters
NMR
Nuclear magnetic resonance
Pharmacology
Positron emission tomography
Positron-Emission Tomography - methods
Primates
Putamen
Raclopride - administration & dosage
Raclopride - pharmacokinetics
Receptors
Receptors, Dopamine D2 - metabolism
Receptors, Dopamine D3 - antagonists & inhibitors
Receptors, Dopamine D3 - metabolism
Tomography
Vertebrates: nervous system and sense organs
title Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurovascular%20coupling%20to%20D2/D3%20dopamine%20receptor%20occupancy%20using%20simultaneous%20PET/functional%20MRI&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sander,%20Christin%20Y.&rft.date=2013-07-02&rft.volume=110&rft.issue=27&rft.spage=11169&rft.epage=11174&rft.pages=11169-11174&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.1220512110&rft_dat=%3Cjstor_pasca%3E42706393%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1399197102&rft_id=info:pmid/23723346&rft_jstor_id=42706393&rfr_iscdi=true