Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited
Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sit...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2013-07, Vol.25 (27), p.275701-275701 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275701 |
---|---|
container_issue | 27 |
container_start_page | 275701 |
container_title | Journal of physics. Condensed matter |
container_volume | 25 |
creator | Zhou, Tingting Chen, Xiaolong Guo, Jiangang Jin, Shifeng Wang, Gang Lai, Xiaofang Ying, Tianping Zhang, Han Shen, Shijie Wang, Shunchong Zhu, Kaixing |
description | Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2−ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2−xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7−xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping. |
doi_str_mv | 10.1088/0953-8984/25/27/275701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27541138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1370125873</sourcerecordid><originalsourceid>FETCH-LOGICAL-i284t-dafd9825c9a34dffcc814b818f2855471cb459437877081b2cdcf6ca251ef2a13</originalsourceid><addsrcrecordid>eNpF0MtKw0AUBuBBFFurr1CyEdyknWvnZCmlVbHiQgV3w2QuMiVNYiYR-gaufUSfxJRWhQNn850D_4_QmOAJwQBTnAmWQgZ8SsWUyn6ExOQIDQmbkXTG4fUYDf_QAJ3FuMYYc2D8FA0ok5ILLIdILrx3po1J5ZN5lejSJg9lYqs6lG9JKJN7PIGlo9-fX9snR5PGfYQYWmfP0YnXRXQXhz1CL8vF8_w2XT3e3M2vV2mgwNvUam8zoMJkmnHrvTFAeA4EPAUhuCQm5yLjTIKUGEhOjTV-ZjQVxHmqCRuhq_3fuqneOxdbtQnRuKLQpau6qAjrY1MBkvV0fKBdvnFW1U3Y6GarfsP24PIAdDS68I0uTYj_TgpOCIPe0b0LVa3WVdeUfUJFsNo1r3alql2pior-Ru2bZz-oZXEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370125873</pqid></control><display><type>article</type><title>Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhou, Tingting ; Chen, Xiaolong ; Guo, Jiangang ; Jin, Shifeng ; Wang, Gang ; Lai, Xiaofang ; Ying, Tianping ; Zhang, Han ; Shen, Shijie ; Wang, Shunchong ; Zhu, Kaixing</creator><creatorcontrib>Zhou, Tingting ; Chen, Xiaolong ; Guo, Jiangang ; Jin, Shifeng ; Wang, Gang ; Lai, Xiaofang ; Ying, Tianping ; Zhang, Han ; Shen, Shijie ; Wang, Shunchong ; Zhu, Kaixing</creatorcontrib><description>Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2−ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2−xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7−xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/25/27/275701</identifier><identifier>PMID: 23774507</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Cobalt - chemistry ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Effects of crystal defects, doping and substitution ; Electric Conductivity ; Exact sciences and technology ; Iron Compounds - chemistry ; Magnetics ; Manganese - chemistry ; Models, Chemical ; Physics ; Potassium - chemistry ; Selenium Compounds - chemistry ; Superconductivity ; Transition temperature variations</subject><ispartof>Journal of physics. Condensed matter, 2013-07, Vol.25 (27), p.275701-275701</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/25/27/275701/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27541138$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23774507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Tingting</creatorcontrib><creatorcontrib>Chen, Xiaolong</creatorcontrib><creatorcontrib>Guo, Jiangang</creatorcontrib><creatorcontrib>Jin, Shifeng</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Lai, Xiaofang</creatorcontrib><creatorcontrib>Ying, Tianping</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Shen, Shijie</creatorcontrib><creatorcontrib>Wang, Shunchong</creatorcontrib><creatorcontrib>Zhu, Kaixing</creatorcontrib><title>Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2−ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2−xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7−xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping.</description><subject>Cobalt - chemistry</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Effects of crystal defects, doping and substitution</subject><subject>Electric Conductivity</subject><subject>Exact sciences and technology</subject><subject>Iron Compounds - chemistry</subject><subject>Magnetics</subject><subject>Manganese - chemistry</subject><subject>Models, Chemical</subject><subject>Physics</subject><subject>Potassium - chemistry</subject><subject>Selenium Compounds - chemistry</subject><subject>Superconductivity</subject><subject>Transition temperature variations</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0MtKw0AUBuBBFFurr1CyEdyknWvnZCmlVbHiQgV3w2QuMiVNYiYR-gaufUSfxJRWhQNn850D_4_QmOAJwQBTnAmWQgZ8SsWUyn6ExOQIDQmbkXTG4fUYDf_QAJ3FuMYYc2D8FA0ok5ILLIdILrx3po1J5ZN5lejSJg9lYqs6lG9JKJN7PIGlo9-fX9snR5PGfYQYWmfP0YnXRXQXhz1CL8vF8_w2XT3e3M2vV2mgwNvUam8zoMJkmnHrvTFAeA4EPAUhuCQm5yLjTIKUGEhOjTV-ZjQVxHmqCRuhq_3fuqneOxdbtQnRuKLQpau6qAjrY1MBkvV0fKBdvnFW1U3Y6GarfsP24PIAdDS68I0uTYj_TgpOCIPe0b0LVa3WVdeUfUJFsNo1r3alql2pior-Ru2bZz-oZXEA</recordid><startdate>20130710</startdate><enddate>20130710</enddate><creator>Zhou, Tingting</creator><creator>Chen, Xiaolong</creator><creator>Guo, Jiangang</creator><creator>Jin, Shifeng</creator><creator>Wang, Gang</creator><creator>Lai, Xiaofang</creator><creator>Ying, Tianping</creator><creator>Zhang, Han</creator><creator>Shen, Shijie</creator><creator>Wang, Shunchong</creator><creator>Zhu, Kaixing</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130710</creationdate><title>Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited</title><author>Zhou, Tingting ; Chen, Xiaolong ; Guo, Jiangang ; Jin, Shifeng ; Wang, Gang ; Lai, Xiaofang ; Ying, Tianping ; Zhang, Han ; Shen, Shijie ; Wang, Shunchong ; Zhu, Kaixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i284t-dafd9825c9a34dffcc814b818f2855471cb459437877081b2cdcf6ca251ef2a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cobalt - chemistry</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Effects of crystal defects, doping and substitution</topic><topic>Electric Conductivity</topic><topic>Exact sciences and technology</topic><topic>Iron Compounds - chemistry</topic><topic>Magnetics</topic><topic>Manganese - chemistry</topic><topic>Models, Chemical</topic><topic>Physics</topic><topic>Potassium - chemistry</topic><topic>Selenium Compounds - chemistry</topic><topic>Superconductivity</topic><topic>Transition temperature variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Tingting</creatorcontrib><creatorcontrib>Chen, Xiaolong</creatorcontrib><creatorcontrib>Guo, Jiangang</creatorcontrib><creatorcontrib>Jin, Shifeng</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Lai, Xiaofang</creatorcontrib><creatorcontrib>Ying, Tianping</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Shen, Shijie</creatorcontrib><creatorcontrib>Wang, Shunchong</creatorcontrib><creatorcontrib>Zhu, Kaixing</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Tingting</au><au>Chen, Xiaolong</au><au>Guo, Jiangang</au><au>Jin, Shifeng</au><au>Wang, Gang</au><au>Lai, Xiaofang</au><au>Ying, Tianping</au><au>Zhang, Han</au><au>Shen, Shijie</au><au>Wang, Shunchong</au><au>Zhu, Kaixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2013-07-10</date><risdate>2013</risdate><volume>25</volume><issue>27</issue><spage>275701</spage><epage>275701</epage><pages>275701-275701</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2−ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2−xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7−xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>23774507</pmid><doi>10.1088/0953-8984/25/27/275701</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2013-07, Vol.25 (27), p.275701-275701 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_pascalfrancis_primary_27541138 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Cobalt - chemistry Condensed matter: electronic structure, electrical, magnetic, and optical properties Effects of crystal defects, doping and substitution Electric Conductivity Exact sciences and technology Iron Compounds - chemistry Magnetics Manganese - chemistry Models, Chemical Physics Potassium - chemistry Selenium Compounds - chemistry Superconductivity Transition temperature variations |
title | Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Co%20and%20Mn%20doping%20in%20K0.8Fe2%E2%88%92ySe2%20revisited&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Zhou,%20Tingting&rft.date=2013-07-10&rft.volume=25&rft.issue=27&rft.spage=275701&rft.epage=275701&rft.pages=275701-275701&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/25/27/275701&rft_dat=%3Cproquest_pasca%3E1370125873%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370125873&rft_id=info:pmid/23774507&rfr_iscdi=true |