Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited

Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2013-07, Vol.25 (27), p.275701-275701
Hauptverfasser: Zhou, Tingting, Chen, Xiaolong, Guo, Jiangang, Jin, Shifeng, Wang, Gang, Lai, Xiaofang, Ying, Tianping, Zhang, Han, Shen, Shijie, Wang, Shunchong, Zhu, Kaixing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275701
container_issue 27
container_start_page 275701
container_title Journal of physics. Condensed matter
container_volume 25
creator Zhou, Tingting
Chen, Xiaolong
Guo, Jiangang
Jin, Shifeng
Wang, Gang
Lai, Xiaofang
Ying, Tianping
Zhang, Han
Shen, Shijie
Wang, Shunchong
Zhu, Kaixing
description Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2−ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2−xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7−xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping.
doi_str_mv 10.1088/0953-8984/25/27/275701
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27541138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1370125873</sourcerecordid><originalsourceid>FETCH-LOGICAL-i284t-dafd9825c9a34dffcc814b818f2855471cb459437877081b2cdcf6ca251ef2a13</originalsourceid><addsrcrecordid>eNpF0MtKw0AUBuBBFFurr1CyEdyknWvnZCmlVbHiQgV3w2QuMiVNYiYR-gaufUSfxJRWhQNn850D_4_QmOAJwQBTnAmWQgZ8SsWUyn6ExOQIDQmbkXTG4fUYDf_QAJ3FuMYYc2D8FA0ok5ILLIdILrx3po1J5ZN5lejSJg9lYqs6lG9JKJN7PIGlo9-fX9snR5PGfYQYWmfP0YnXRXQXhz1CL8vF8_w2XT3e3M2vV2mgwNvUam8zoMJkmnHrvTFAeA4EPAUhuCQm5yLjTIKUGEhOjTV-ZjQVxHmqCRuhq_3fuqneOxdbtQnRuKLQpau6qAjrY1MBkvV0fKBdvnFW1U3Y6GarfsP24PIAdDS68I0uTYj_TgpOCIPe0b0LVa3WVdeUfUJFsNo1r3alql2pior-Ru2bZz-oZXEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370125873</pqid></control><display><type>article</type><title>Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhou, Tingting ; Chen, Xiaolong ; Guo, Jiangang ; Jin, Shifeng ; Wang, Gang ; Lai, Xiaofang ; Ying, Tianping ; Zhang, Han ; Shen, Shijie ; Wang, Shunchong ; Zhu, Kaixing</creator><creatorcontrib>Zhou, Tingting ; Chen, Xiaolong ; Guo, Jiangang ; Jin, Shifeng ; Wang, Gang ; Lai, Xiaofang ; Ying, Tianping ; Zhang, Han ; Shen, Shijie ; Wang, Shunchong ; Zhu, Kaixing</creatorcontrib><description>Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2−ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2−xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7−xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/25/27/275701</identifier><identifier>PMID: 23774507</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Cobalt - chemistry ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Effects of crystal defects, doping and substitution ; Electric Conductivity ; Exact sciences and technology ; Iron Compounds - chemistry ; Magnetics ; Manganese - chemistry ; Models, Chemical ; Physics ; Potassium - chemistry ; Selenium Compounds - chemistry ; Superconductivity ; Transition temperature variations</subject><ispartof>Journal of physics. Condensed matter, 2013-07, Vol.25 (27), p.275701-275701</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/25/27/275701/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27541138$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23774507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Tingting</creatorcontrib><creatorcontrib>Chen, Xiaolong</creatorcontrib><creatorcontrib>Guo, Jiangang</creatorcontrib><creatorcontrib>Jin, Shifeng</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Lai, Xiaofang</creatorcontrib><creatorcontrib>Ying, Tianping</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Shen, Shijie</creatorcontrib><creatorcontrib>Wang, Shunchong</creatorcontrib><creatorcontrib>Zhu, Kaixing</creatorcontrib><title>Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2−ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2−xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7−xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping.</description><subject>Cobalt - chemistry</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Effects of crystal defects, doping and substitution</subject><subject>Electric Conductivity</subject><subject>Exact sciences and technology</subject><subject>Iron Compounds - chemistry</subject><subject>Magnetics</subject><subject>Manganese - chemistry</subject><subject>Models, Chemical</subject><subject>Physics</subject><subject>Potassium - chemistry</subject><subject>Selenium Compounds - chemistry</subject><subject>Superconductivity</subject><subject>Transition temperature variations</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0MtKw0AUBuBBFFurr1CyEdyknWvnZCmlVbHiQgV3w2QuMiVNYiYR-gaufUSfxJRWhQNn850D_4_QmOAJwQBTnAmWQgZ8SsWUyn6ExOQIDQmbkXTG4fUYDf_QAJ3FuMYYc2D8FA0ok5ILLIdILrx3po1J5ZN5lejSJg9lYqs6lG9JKJN7PIGlo9-fX9snR5PGfYQYWmfP0YnXRXQXhz1CL8vF8_w2XT3e3M2vV2mgwNvUam8zoMJkmnHrvTFAeA4EPAUhuCQm5yLjTIKUGEhOjTV-ZjQVxHmqCRuhq_3fuqneOxdbtQnRuKLQpau6qAjrY1MBkvV0fKBdvnFW1U3Y6GarfsP24PIAdDS68I0uTYj_TgpOCIPe0b0LVa3WVdeUfUJFsNo1r3alql2pior-Ru2bZz-oZXEA</recordid><startdate>20130710</startdate><enddate>20130710</enddate><creator>Zhou, Tingting</creator><creator>Chen, Xiaolong</creator><creator>Guo, Jiangang</creator><creator>Jin, Shifeng</creator><creator>Wang, Gang</creator><creator>Lai, Xiaofang</creator><creator>Ying, Tianping</creator><creator>Zhang, Han</creator><creator>Shen, Shijie</creator><creator>Wang, Shunchong</creator><creator>Zhu, Kaixing</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130710</creationdate><title>Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited</title><author>Zhou, Tingting ; Chen, Xiaolong ; Guo, Jiangang ; Jin, Shifeng ; Wang, Gang ; Lai, Xiaofang ; Ying, Tianping ; Zhang, Han ; Shen, Shijie ; Wang, Shunchong ; Zhu, Kaixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i284t-dafd9825c9a34dffcc814b818f2855471cb459437877081b2cdcf6ca251ef2a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cobalt - chemistry</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Effects of crystal defects, doping and substitution</topic><topic>Electric Conductivity</topic><topic>Exact sciences and technology</topic><topic>Iron Compounds - chemistry</topic><topic>Magnetics</topic><topic>Manganese - chemistry</topic><topic>Models, Chemical</topic><topic>Physics</topic><topic>Potassium - chemistry</topic><topic>Selenium Compounds - chemistry</topic><topic>Superconductivity</topic><topic>Transition temperature variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Tingting</creatorcontrib><creatorcontrib>Chen, Xiaolong</creatorcontrib><creatorcontrib>Guo, Jiangang</creatorcontrib><creatorcontrib>Jin, Shifeng</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Lai, Xiaofang</creatorcontrib><creatorcontrib>Ying, Tianping</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Shen, Shijie</creatorcontrib><creatorcontrib>Wang, Shunchong</creatorcontrib><creatorcontrib>Zhu, Kaixing</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Tingting</au><au>Chen, Xiaolong</au><au>Guo, Jiangang</au><au>Jin, Shifeng</au><au>Wang, Gang</au><au>Lai, Xiaofang</au><au>Ying, Tianping</au><au>Zhang, Han</au><au>Shen, Shijie</au><au>Wang, Shunchong</au><au>Zhu, Kaixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2013-07-10</date><risdate>2013</risdate><volume>25</volume><issue>27</issue><spage>275701</spage><epage>275701</epage><pages>275701-275701</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2−ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2−xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7−xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>23774507</pmid><doi>10.1088/0953-8984/25/27/275701</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2013-07, Vol.25 (27), p.275701-275701
issn 0953-8984
1361-648X
language eng
recordid cdi_pascalfrancis_primary_27541138
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Cobalt - chemistry
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Effects of crystal defects, doping and substitution
Electric Conductivity
Exact sciences and technology
Iron Compounds - chemistry
Magnetics
Manganese - chemistry
Models, Chemical
Physics
Potassium - chemistry
Selenium Compounds - chemistry
Superconductivity
Transition temperature variations
title Effects of Co and Mn doping in K0.8Fe2−ySe2 revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Co%20and%20Mn%20doping%20in%20K0.8Fe2%E2%88%92ySe2%20revisited&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Zhou,%20Tingting&rft.date=2013-07-10&rft.volume=25&rft.issue=27&rft.spage=275701&rft.epage=275701&rft.pages=275701-275701&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/25/27/275701&rft_dat=%3Cproquest_pasca%3E1370125873%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370125873&rft_id=info:pmid/23774507&rfr_iscdi=true