Deblurring and Sparse Unmixing for Hyperspectral Images
The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2013-07, Vol.51 (7), p.4045-4058 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4058 |
---|---|
container_issue | 7 |
container_start_page | 4045 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 51 |
creator | Xi-Le Zhao Fan Wang Ting-Zhu Huang Ng, M. K. Plemmons, R. J. |
description | The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al. |
doi_str_mv | 10.1109/TGRS.2012.2227764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27530133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6423278</ieee_id><sourcerecordid>1669859603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-df35c7a9a17ce96657ab8841d01fb7b49eafaf9fe5b52ca6e240cac167bf68ee3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsH78APESEMFL6s5mP7JH8RsKgtrzMtnOlpQ0ibst2H9vQ0sPngZmnvdleBi7Aj4G4Pb--_Xzayw4iLEQwhgtj9gIlCpzrqU8ZiMOVueitOKUnaW04BykAjNi5omqZh1j3c4zbGfZV48xUTZtl_XvsAtdzN42PcXUk19FbLL3Jc4pXbCTgE2iy_08Z9OX5-_Ht3zy8fr--DDJvVRqlc9CobxBi2A8Wa2VwaosJcw4hMpU0hIGDDaQqpTwqElI7tGDNlXQJVFxzu52vX3sftaUVm5ZJ09Ngy116-RAa1sqq3mxRW_-oYtuHdvtdw4KA0KURuotBTvKxy6lSMH1sV5i3DjgblDpBpVuUOn2KreZ230zJo9NiNj6Oh2CwqiCQzF8cL3jaiI6nLUUhTBl8QfoDXwn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1371228746</pqid></control><display><type>article</type><title>Deblurring and Sparse Unmixing for Hyperspectral Images</title><source>IEEE Xplore</source><creator>Xi-Le Zhao ; Fan Wang ; Ting-Zhu Huang ; Ng, M. K. ; Plemmons, R. J.</creator><creatorcontrib>Xi-Le Zhao ; Fan Wang ; Ting-Zhu Huang ; Ng, M. K. ; Plemmons, R. J.</creatorcontrib><description>The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2012.2227764</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Alternating direction methods ; Applied geophysics ; Blurring ; Convergence ; deblurring ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hyperspectral imaging ; Internal geophysics ; linear spectral unmixing ; Mathematical models ; Matrix decomposition ; Numerical models ; Operators ; Optimization ; Point spread functions ; Regularization ; Studies ; Television ; total variation (TV)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2013-07, Vol.51 (7), p.4045-4058</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-df35c7a9a17ce96657ab8841d01fb7b49eafaf9fe5b52ca6e240cac167bf68ee3</citedby><cites>FETCH-LOGICAL-c455t-df35c7a9a17ce96657ab8841d01fb7b49eafaf9fe5b52ca6e240cac167bf68ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6423278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6423278$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27530133$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xi-Le Zhao</creatorcontrib><creatorcontrib>Fan Wang</creatorcontrib><creatorcontrib>Ting-Zhu Huang</creatorcontrib><creatorcontrib>Ng, M. K.</creatorcontrib><creatorcontrib>Plemmons, R. J.</creatorcontrib><title>Deblurring and Sparse Unmixing for Hyperspectral Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al.</description><subject>Algorithms</subject><subject>Alternating direction methods</subject><subject>Applied geophysics</subject><subject>Blurring</subject><subject>Convergence</subject><subject>deblurring</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hyperspectral imaging</subject><subject>Internal geophysics</subject><subject>linear spectral unmixing</subject><subject>Mathematical models</subject><subject>Matrix decomposition</subject><subject>Numerical models</subject><subject>Operators</subject><subject>Optimization</subject><subject>Point spread functions</subject><subject>Regularization</subject><subject>Studies</subject><subject>Television</subject><subject>total variation (TV)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsH78APESEMFL6s5mP7JH8RsKgtrzMtnOlpQ0ibst2H9vQ0sPngZmnvdleBi7Aj4G4Pb--_Xzayw4iLEQwhgtj9gIlCpzrqU8ZiMOVueitOKUnaW04BykAjNi5omqZh1j3c4zbGfZV48xUTZtl_XvsAtdzN42PcXUk19FbLL3Jc4pXbCTgE2iy_08Z9OX5-_Ht3zy8fr--DDJvVRqlc9CobxBi2A8Wa2VwaosJcw4hMpU0hIGDDaQqpTwqElI7tGDNlXQJVFxzu52vX3sftaUVm5ZJ09Ngy116-RAa1sqq3mxRW_-oYtuHdvtdw4KA0KURuotBTvKxy6lSMH1sV5i3DjgblDpBpVuUOn2KreZ230zJo9NiNj6Oh2CwqiCQzF8cL3jaiI6nLUUhTBl8QfoDXwn</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Xi-Le Zhao</creator><creator>Fan Wang</creator><creator>Ting-Zhu Huang</creator><creator>Ng, M. K.</creator><creator>Plemmons, R. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20130701</creationdate><title>Deblurring and Sparse Unmixing for Hyperspectral Images</title><author>Xi-Le Zhao ; Fan Wang ; Ting-Zhu Huang ; Ng, M. K. ; Plemmons, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-df35c7a9a17ce96657ab8841d01fb7b49eafaf9fe5b52ca6e240cac167bf68ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Alternating direction methods</topic><topic>Applied geophysics</topic><topic>Blurring</topic><topic>Convergence</topic><topic>deblurring</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hyperspectral imaging</topic><topic>Internal geophysics</topic><topic>linear spectral unmixing</topic><topic>Mathematical models</topic><topic>Matrix decomposition</topic><topic>Numerical models</topic><topic>Operators</topic><topic>Optimization</topic><topic>Point spread functions</topic><topic>Regularization</topic><topic>Studies</topic><topic>Television</topic><topic>total variation (TV)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi-Le Zhao</creatorcontrib><creatorcontrib>Fan Wang</creatorcontrib><creatorcontrib>Ting-Zhu Huang</creatorcontrib><creatorcontrib>Ng, M. K.</creatorcontrib><creatorcontrib>Plemmons, R. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xi-Le Zhao</au><au>Fan Wang</au><au>Ting-Zhu Huang</au><au>Ng, M. K.</au><au>Plemmons, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deblurring and Sparse Unmixing for Hyperspectral Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>51</volume><issue>7</issue><spage>4045</spage><epage>4058</epage><pages>4045-4058</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2012.2227764</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2013-07, Vol.51 (7), p.4045-4058 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_pascalfrancis_primary_27530133 |
source | IEEE Xplore |
subjects | Algorithms Alternating direction methods Applied geophysics Blurring Convergence deblurring Earth sciences Earth, ocean, space Exact sciences and technology Hyperspectral imaging Internal geophysics linear spectral unmixing Mathematical models Matrix decomposition Numerical models Operators Optimization Point spread functions Regularization Studies Television total variation (TV) |
title | Deblurring and Sparse Unmixing for Hyperspectral Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deblurring%20and%20Sparse%20Unmixing%20for%20Hyperspectral%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xi-Le%20Zhao&rft.date=2013-07-01&rft.volume=51&rft.issue=7&rft.spage=4045&rft.epage=4058&rft.pages=4045-4058&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2012.2227764&rft_dat=%3Cproquest_RIE%3E1669859603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1371228746&rft_id=info:pmid/&rft_ieee_id=6423278&rfr_iscdi=true |