Deblurring and Sparse Unmixing for Hyperspectral Images

The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2013-07, Vol.51 (7), p.4045-4058
Hauptverfasser: Xi-Le Zhao, Fan Wang, Ting-Zhu Huang, Ng, M. K., Plemmons, R. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4058
container_issue 7
container_start_page 4045
container_title IEEE transactions on geoscience and remote sensing
container_volume 51
creator Xi-Le Zhao
Fan Wang
Ting-Zhu Huang
Ng, M. K.
Plemmons, R. J.
description The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al.
doi_str_mv 10.1109/TGRS.2012.2227764
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27530133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6423278</ieee_id><sourcerecordid>1669859603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-df35c7a9a17ce96657ab8841d01fb7b49eafaf9fe5b52ca6e240cac167bf68ee3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsH78APESEMFL6s5mP7JH8RsKgtrzMtnOlpQ0ibst2H9vQ0sPngZmnvdleBi7Aj4G4Pb--_Xzayw4iLEQwhgtj9gIlCpzrqU8ZiMOVueitOKUnaW04BykAjNi5omqZh1j3c4zbGfZV48xUTZtl_XvsAtdzN42PcXUk19FbLL3Jc4pXbCTgE2iy_08Z9OX5-_Ht3zy8fr--DDJvVRqlc9CobxBi2A8Wa2VwaosJcw4hMpU0hIGDDaQqpTwqElI7tGDNlXQJVFxzu52vX3sftaUVm5ZJ09Ngy116-RAa1sqq3mxRW_-oYtuHdvtdw4KA0KURuotBTvKxy6lSMH1sV5i3DjgblDpBpVuUOn2KreZ230zJo9NiNj6Oh2CwqiCQzF8cL3jaiI6nLUUhTBl8QfoDXwn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1371228746</pqid></control><display><type>article</type><title>Deblurring and Sparse Unmixing for Hyperspectral Images</title><source>IEEE Xplore</source><creator>Xi-Le Zhao ; Fan Wang ; Ting-Zhu Huang ; Ng, M. K. ; Plemmons, R. J.</creator><creatorcontrib>Xi-Le Zhao ; Fan Wang ; Ting-Zhu Huang ; Ng, M. K. ; Plemmons, R. J.</creatorcontrib><description>The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2012.2227764</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Alternating direction methods ; Applied geophysics ; Blurring ; Convergence ; deblurring ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hyperspectral imaging ; Internal geophysics ; linear spectral unmixing ; Mathematical models ; Matrix decomposition ; Numerical models ; Operators ; Optimization ; Point spread functions ; Regularization ; Studies ; Television ; total variation (TV)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2013-07, Vol.51 (7), p.4045-4058</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-df35c7a9a17ce96657ab8841d01fb7b49eafaf9fe5b52ca6e240cac167bf68ee3</citedby><cites>FETCH-LOGICAL-c455t-df35c7a9a17ce96657ab8841d01fb7b49eafaf9fe5b52ca6e240cac167bf68ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6423278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6423278$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27530133$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xi-Le Zhao</creatorcontrib><creatorcontrib>Fan Wang</creatorcontrib><creatorcontrib>Ting-Zhu Huang</creatorcontrib><creatorcontrib>Ng, M. K.</creatorcontrib><creatorcontrib>Plemmons, R. J.</creatorcontrib><title>Deblurring and Sparse Unmixing for Hyperspectral Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al.</description><subject>Algorithms</subject><subject>Alternating direction methods</subject><subject>Applied geophysics</subject><subject>Blurring</subject><subject>Convergence</subject><subject>deblurring</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hyperspectral imaging</subject><subject>Internal geophysics</subject><subject>linear spectral unmixing</subject><subject>Mathematical models</subject><subject>Matrix decomposition</subject><subject>Numerical models</subject><subject>Operators</subject><subject>Optimization</subject><subject>Point spread functions</subject><subject>Regularization</subject><subject>Studies</subject><subject>Television</subject><subject>total variation (TV)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsH78APESEMFL6s5mP7JH8RsKgtrzMtnOlpQ0ibst2H9vQ0sPngZmnvdleBi7Aj4G4Pb--_Xzayw4iLEQwhgtj9gIlCpzrqU8ZiMOVueitOKUnaW04BykAjNi5omqZh1j3c4zbGfZV48xUTZtl_XvsAtdzN42PcXUk19FbLL3Jc4pXbCTgE2iy_08Z9OX5-_Ht3zy8fr--DDJvVRqlc9CobxBi2A8Wa2VwaosJcw4hMpU0hIGDDaQqpTwqElI7tGDNlXQJVFxzu52vX3sftaUVm5ZJ09Ngy116-RAa1sqq3mxRW_-oYtuHdvtdw4KA0KURuotBTvKxy6lSMH1sV5i3DjgblDpBpVuUOn2KreZ230zJo9NiNj6Oh2CwqiCQzF8cL3jaiI6nLUUhTBl8QfoDXwn</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Xi-Le Zhao</creator><creator>Fan Wang</creator><creator>Ting-Zhu Huang</creator><creator>Ng, M. K.</creator><creator>Plemmons, R. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20130701</creationdate><title>Deblurring and Sparse Unmixing for Hyperspectral Images</title><author>Xi-Le Zhao ; Fan Wang ; Ting-Zhu Huang ; Ng, M. K. ; Plemmons, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-df35c7a9a17ce96657ab8841d01fb7b49eafaf9fe5b52ca6e240cac167bf68ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Alternating direction methods</topic><topic>Applied geophysics</topic><topic>Blurring</topic><topic>Convergence</topic><topic>deblurring</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hyperspectral imaging</topic><topic>Internal geophysics</topic><topic>linear spectral unmixing</topic><topic>Mathematical models</topic><topic>Matrix decomposition</topic><topic>Numerical models</topic><topic>Operators</topic><topic>Optimization</topic><topic>Point spread functions</topic><topic>Regularization</topic><topic>Studies</topic><topic>Television</topic><topic>total variation (TV)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi-Le Zhao</creatorcontrib><creatorcontrib>Fan Wang</creatorcontrib><creatorcontrib>Ting-Zhu Huang</creatorcontrib><creatorcontrib>Ng, M. K.</creatorcontrib><creatorcontrib>Plemmons, R. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xi-Le Zhao</au><au>Fan Wang</au><au>Ting-Zhu Huang</au><au>Ng, M. K.</au><au>Plemmons, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deblurring and Sparse Unmixing for Hyperspectral Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>51</volume><issue>7</issue><spage>4045</spage><epage>4058</epage><pages>4045-4058</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2012.2227764</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2013-07, Vol.51 (7), p.4045-4058
issn 0196-2892
1558-0644
language eng
recordid cdi_pascalfrancis_primary_27530133
source IEEE Xplore
subjects Algorithms
Alternating direction methods
Applied geophysics
Blurring
Convergence
deblurring
Earth sciences
Earth, ocean, space
Exact sciences and technology
Hyperspectral imaging
Internal geophysics
linear spectral unmixing
Mathematical models
Matrix decomposition
Numerical models
Operators
Optimization
Point spread functions
Regularization
Studies
Television
total variation (TV)
title Deblurring and Sparse Unmixing for Hyperspectral Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deblurring%20and%20Sparse%20Unmixing%20for%20Hyperspectral%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xi-Le%20Zhao&rft.date=2013-07-01&rft.volume=51&rft.issue=7&rft.spage=4045&rft.epage=4058&rft.pages=4045-4058&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2012.2227764&rft_dat=%3Cproquest_RIE%3E1669859603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1371228746&rft_id=info:pmid/&rft_ieee_id=6423278&rfr_iscdi=true