16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder

In this paper, we discuss the architecture, design, and testing of the first 16-bit asynchronous wave-pipelined sparse-tree superconductor rapid single flux quantum adder implemented using the ISTEC 10 kA/cm 2 ADP2.1 fabrication process. Compared to the Kogge-Stone adder, our parallel-prefix sparse-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.1700605-1700605
Hauptverfasser: Dorojevets, M., Ayala, C. L., Yoshikawa, N., Fujimaki, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1700605
container_issue 3
container_start_page 1700605
container_title IEEE transactions on applied superconductivity
container_volume 23
creator Dorojevets, M.
Ayala, C. L.
Yoshikawa, N.
Fujimaki, A.
description In this paper, we discuss the architecture, design, and testing of the first 16-bit asynchronous wave-pipelined sparse-tree superconductor rapid single flux quantum adder implemented using the ISTEC 10 kA/cm 2 ADP2.1 fabrication process. Compared to the Kogge-Stone adder, our parallel-prefix sparse-tree adder has better energy efficiency with significantly reduced complexity (at the expense of latency) and almost no decrease in operation frequency. The 16-bit adder core (without SFQ-to-dc and dc-to-SFQ converters) has 9941 Josephson junctions occupying an area of 8.5 mm 2 . It is designed for the target operation frequency of 30 GHz with the expected latency of 352 ps at the bias voltage of 2.5 mV. The adder chip was fabricated and successfully tested at low frequency for all test patterns with measured bias margins of +9.8%/-10.7%.
doi_str_mv 10.1109/TASC.2012.2233846
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27529945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6380540</ieee_id><sourcerecordid>2874267281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-2cc21e083f3f70e039003070b071de9a5e074174be2d45f5c0807906664adbb63</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFZ_gLgJiODC1HvnkUmWtVgVCj5acTlMJjeQkiZ1phX89ya0dOHqXjjfORwOY5cII0TI7hfj-WTEAfmIcyFSmRyxASqVxlyhOu5-UBinnXbKzkJYAqBMpRqwO0zih2oTfdkfit-qNdVVQ0U0X1sfKF54ouhjPn2PxkVB_pydlLYOdLG_Q_Y5fVxMnuPZ69PLZDyLnVDJJubOcSRIRSlKDQQiAxCgIQeNBWVWEWiJWubEC6lK5SAFnUGSJNIWeZ6IIbvd5a59-72lsDGrKjiqa9tQuw0GhcykEAJVh17_Q5ft1jddO4Nc8y5Tq7SjcEc534bgqTRrX62s_zUIpt_P9PuZfj-z36_z3OyTbXC2Lr1tXBUORq4VzzLZN7jacRURHeREpKAkiD_zdHPD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272666758</pqid></control><display><type>article</type><title>16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder</title><source>IEEE Electronic Library (IEL)</source><creator>Dorojevets, M. ; Ayala, C. L. ; Yoshikawa, N. ; Fujimaki, A.</creator><creatorcontrib>Dorojevets, M. ; Ayala, C. L. ; Yoshikawa, N. ; Fujimaki, A.</creatorcontrib><description>In this paper, we discuss the architecture, design, and testing of the first 16-bit asynchronous wave-pipelined sparse-tree superconductor rapid single flux quantum adder implemented using the ISTEC 10 kA/cm 2 ADP2.1 fabrication process. Compared to the Kogge-Stone adder, our parallel-prefix sparse-tree adder has better energy efficiency with significantly reduced complexity (at the expense of latency) and almost no decrease in operation frequency. The 16-bit adder core (without SFQ-to-dc and dc-to-SFQ converters) has 9941 Josephson junctions occupying an area of 8.5 mm 2 . It is designed for the target operation frequency of 30 GHz with the expected latency of 352 ps at the bias voltage of 2.5 mV. The adder chip was fabricated and successfully tested at low frequency for all test patterns with measured bias margins of +9.8%/-10.7%.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2233846</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adders ; Applied sciences ; Bias ; Chip formation ; Circuit properties ; Clocks ; Design. Technologies. Operation analysis. Testing ; digital arithmetic ; Digital circuits ; Educational institutions ; Electric potential ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Error analysis ; Exact sciences and technology ; Flux ; Generators ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Logic gates ; Low frequencies ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal convertors ; superconducting integrated circuits ; superconducting logic circuits ; Superconductivity ; Testing ; Voltage</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.1700605-1700605</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-2cc21e083f3f70e039003070b071de9a5e074174be2d45f5c0807906664adbb63</citedby><cites>FETCH-LOGICAL-c356t-2cc21e083f3f70e039003070b071de9a5e074174be2d45f5c0807906664adbb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6380540$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6380540$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27529945$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorojevets, M.</creatorcontrib><creatorcontrib>Ayala, C. L.</creatorcontrib><creatorcontrib>Yoshikawa, N.</creatorcontrib><creatorcontrib>Fujimaki, A.</creatorcontrib><title>16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>In this paper, we discuss the architecture, design, and testing of the first 16-bit asynchronous wave-pipelined sparse-tree superconductor rapid single flux quantum adder implemented using the ISTEC 10 kA/cm 2 ADP2.1 fabrication process. Compared to the Kogge-Stone adder, our parallel-prefix sparse-tree adder has better energy efficiency with significantly reduced complexity (at the expense of latency) and almost no decrease in operation frequency. The 16-bit adder core (without SFQ-to-dc and dc-to-SFQ converters) has 9941 Josephson junctions occupying an area of 8.5 mm 2 . It is designed for the target operation frequency of 30 GHz with the expected latency of 352 ps at the bias voltage of 2.5 mV. The adder chip was fabricated and successfully tested at low frequency for all test patterns with measured bias margins of +9.8%/-10.7%.</description><subject>Adders</subject><subject>Applied sciences</subject><subject>Bias</subject><subject>Chip formation</subject><subject>Circuit properties</subject><subject>Clocks</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>digital arithmetic</subject><subject>Digital circuits</subject><subject>Educational institutions</subject><subject>Electric potential</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Generators</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Logic gates</subject><subject>Low frequencies</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal convertors</subject><subject>superconducting integrated circuits</subject><subject>superconducting logic circuits</subject><subject>Superconductivity</subject><subject>Testing</subject><subject>Voltage</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AUhQdRsFZ_gLgJiODC1HvnkUmWtVgVCj5acTlMJjeQkiZ1phX89ya0dOHqXjjfORwOY5cII0TI7hfj-WTEAfmIcyFSmRyxASqVxlyhOu5-UBinnXbKzkJYAqBMpRqwO0zih2oTfdkfit-qNdVVQ0U0X1sfKF54ouhjPn2PxkVB_pydlLYOdLG_Q_Y5fVxMnuPZ69PLZDyLnVDJJubOcSRIRSlKDQQiAxCgIQeNBWVWEWiJWubEC6lK5SAFnUGSJNIWeZ6IIbvd5a59-72lsDGrKjiqa9tQuw0GhcykEAJVh17_Q5ft1jddO4Nc8y5Tq7SjcEc534bgqTRrX62s_zUIpt_P9PuZfj-z36_z3OyTbXC2Lr1tXBUORq4VzzLZN7jacRURHeREpKAkiD_zdHPD</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Dorojevets, M.</creator><creator>Ayala, C. L.</creator><creator>Yoshikawa, N.</creator><creator>Fujimaki, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder</title><author>Dorojevets, M. ; Ayala, C. L. ; Yoshikawa, N. ; Fujimaki, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-2cc21e083f3f70e039003070b071de9a5e074174be2d45f5c0807906664adbb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adders</topic><topic>Applied sciences</topic><topic>Bias</topic><topic>Chip formation</topic><topic>Circuit properties</topic><topic>Clocks</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>digital arithmetic</topic><topic>Digital circuits</topic><topic>Educational institutions</topic><topic>Electric potential</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Generators</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Logic gates</topic><topic>Low frequencies</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal convertors</topic><topic>superconducting integrated circuits</topic><topic>superconducting logic circuits</topic><topic>Superconductivity</topic><topic>Testing</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorojevets, M.</creatorcontrib><creatorcontrib>Ayala, C. L.</creatorcontrib><creatorcontrib>Yoshikawa, N.</creatorcontrib><creatorcontrib>Fujimaki, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dorojevets, M.</au><au>Ayala, C. L.</au><au>Yoshikawa, N.</au><au>Fujimaki, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>1700605</spage><epage>1700605</epage><pages>1700605-1700605</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In this paper, we discuss the architecture, design, and testing of the first 16-bit asynchronous wave-pipelined sparse-tree superconductor rapid single flux quantum adder implemented using the ISTEC 10 kA/cm 2 ADP2.1 fabrication process. Compared to the Kogge-Stone adder, our parallel-prefix sparse-tree adder has better energy efficiency with significantly reduced complexity (at the expense of latency) and almost no decrease in operation frequency. The 16-bit adder core (without SFQ-to-dc and dc-to-SFQ converters) has 9941 Josephson junctions occupying an area of 8.5 mm 2 . It is designed for the target operation frequency of 30 GHz with the expected latency of 352 ps at the bias voltage of 2.5 mV. The adder chip was fabricated and successfully tested at low frequency for all test patterns with measured bias margins of +9.8%/-10.7%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2012.2233846</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.1700605-1700605
issn 1051-8223
1558-2515
language eng
recordid cdi_pascalfrancis_primary_27529945
source IEEE Electronic Library (IEL)
subjects Adders
Applied sciences
Bias
Chip formation
Circuit properties
Clocks
Design. Technologies. Operation analysis. Testing
digital arithmetic
Digital circuits
Educational institutions
Electric potential
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Error analysis
Exact sciences and technology
Flux
Generators
Integrated circuits
Integrated circuits by function (including memories and processors)
Logic gates
Low frequencies
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Signal convertors
superconducting integrated circuits
superconducting logic circuits
Superconductivity
Testing
Voltage
title 16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=16-Bit%20Wave-Pipelined%20Sparse-Tree%20RSFQ%20Adder&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Dorojevets,%20M.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=1700605&rft.epage=1700605&rft.pages=1700605-1700605&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2012.2233846&rft_dat=%3Cproquest_RIE%3E2874267281%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272666758&rft_id=info:pmid/&rft_ieee_id=6380540&rfr_iscdi=true