Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter

With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.5601204-5601204
Hauptverfasser: Elshiekh, M. E., Mansour, D. A., Azmy, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5601204
container_issue 3
container_start_page 5601204
container_title IEEE transactions on applied superconductivity
container_volume 23
creator Elshiekh, M. E.
Mansour, D. A.
Azmy, A. M.
description With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at the stator side and improve the fault ride-through (FRT) capability of the system. To highlight the proposed technique, a doubly fed induction generator (DFIG) is considered as a wind-turbine generator, where the whole system is simulated using PSCAD/EMTDC software. Detailed simulation results are obtained with and without SFCL considering stator and rotor currents. In addition, the voltage profile at the generator terminals is analyzed. The effect of limiting resistance value is also investigated. The obtained results ensure that the SFCL is effective in decreasing the fault current. Moreover, both the voltage dip at the generator terminals and the reactive power consumption from the grid are decreased during the fault. The voltage dip characteristics are discussed in accordance with international grid codes for wind turbines.
doi_str_mv 10.1109/TASC.2012.2235132
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27529612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6387267</ieee_id><sourcerecordid>27529612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6f80ddc3f4ca3b97ecd2f39c2c89b632005f77d7edb124416a20db3ec03c9cb53</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRsFZ_gLiZjcvEmTuZPJY12looCDbFZZjMox1JkzCTCP33NrTU1b1wzncWH0KPlISUkuylmK3zEAiFEIBxyuAKTSjnaQCc8uvjTzgN0mN2i-68_yGERmnEJ6hZ7jvX_tpmi-diqHv8ZZUOip1rh-0O56ITla1tf8CtwW_z5SJ4FV4r_G0bhYvBVbbReONHfD102sm2UYPs_-fywTnd9Hhl97bX7h7dGFF7_XC-U7SZvxf5R7D6XCzz2SqQkPE-iE1KlJLMRFKwKku0VGBYJkGmWRUzIISbJFGJVhWFKKKxAKIqpiVhMpMVZ1NET7vStd47bcrO2b1wh5KSchRWjsLKUVh5FnZknk9MJ7wUtXGikdZfQEg4ZDEde0-nntVaX-KYpQnECfsDyBR1aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter</title><source>IEEE Electronic Library (IEL)</source><creator>Elshiekh, M. E. ; Mansour, D. A. ; Azmy, A. M.</creator><creatorcontrib>Elshiekh, M. E. ; Mansour, D. A. ; Azmy, A. M.</creatorcontrib><description>With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at the stator side and improve the fault ride-through (FRT) capability of the system. To highlight the proposed technique, a doubly fed induction generator (DFIG) is considered as a wind-turbine generator, where the whole system is simulated using PSCAD/EMTDC software. Detailed simulation results are obtained with and without SFCL considering stator and rotor currents. In addition, the voltage profile at the generator terminals is analyzed. The effect of limiting resistance value is also investigated. The obtained results ensure that the SFCL is effective in decreasing the fault current. Moreover, both the voltage dip at the generator terminals and the reactive power consumption from the grid are decreased during the fault. The voltage dip characteristics are discussed in accordance with international grid codes for wind turbines.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2235132</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Connection and protection apparatus ; Direct energy conversion and energy accumulation ; Doubly fed induction generator (DFIG) ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electronics ; Exact sciences and technology ; fault ride-through (FRT) capability ; Generators ; High voltage or high current generators ; Limiting ; Miscellaneous ; Resistance ; Rotors ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stators ; Superconducting devices ; superconducting fault current limiter (SFCL) ; Various equipment and components ; Voltage fluctuations ; wind turbine ; Wind turbines</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.5601204-5601204</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-6f80ddc3f4ca3b97ecd2f39c2c89b632005f77d7edb124416a20db3ec03c9cb53</citedby><cites>FETCH-LOGICAL-c295t-6f80ddc3f4ca3b97ecd2f39c2c89b632005f77d7edb124416a20db3ec03c9cb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6387267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23934,23935,25144,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6387267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27529612$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Elshiekh, M. E.</creatorcontrib><creatorcontrib>Mansour, D. A.</creatorcontrib><creatorcontrib>Azmy, A. M.</creatorcontrib><title>Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at the stator side and improve the fault ride-through (FRT) capability of the system. To highlight the proposed technique, a doubly fed induction generator (DFIG) is considered as a wind-turbine generator, where the whole system is simulated using PSCAD/EMTDC software. Detailed simulation results are obtained with and without SFCL considering stator and rotor currents. In addition, the voltage profile at the generator terminals is analyzed. The effect of limiting resistance value is also investigated. The obtained results ensure that the SFCL is effective in decreasing the fault current. Moreover, both the voltage dip at the generator terminals and the reactive power consumption from the grid are decreased during the fault. The voltage dip characteristics are discussed in accordance with international grid codes for wind turbines.</description><subject>Applied sciences</subject><subject>Connection and protection apparatus</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Doubly fed induction generator (DFIG)</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>fault ride-through (FRT) capability</subject><subject>Generators</subject><subject>High voltage or high current generators</subject><subject>Limiting</subject><subject>Miscellaneous</subject><subject>Resistance</subject><subject>Rotors</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stators</subject><subject>Superconducting devices</subject><subject>superconducting fault current limiter (SFCL)</subject><subject>Various equipment and components</subject><subject>Voltage fluctuations</subject><subject>wind turbine</subject><subject>Wind turbines</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkEtLw0AUhQdRsFZ_gLiZjcvEmTuZPJY12looCDbFZZjMox1JkzCTCP33NrTU1b1wzncWH0KPlISUkuylmK3zEAiFEIBxyuAKTSjnaQCc8uvjTzgN0mN2i-68_yGERmnEJ6hZ7jvX_tpmi-diqHv8ZZUOip1rh-0O56ITla1tf8CtwW_z5SJ4FV4r_G0bhYvBVbbReONHfD102sm2UYPs_-fywTnd9Hhl97bX7h7dGFF7_XC-U7SZvxf5R7D6XCzz2SqQkPE-iE1KlJLMRFKwKku0VGBYJkGmWRUzIISbJFGJVhWFKKKxAKIqpiVhMpMVZ1NET7vStd47bcrO2b1wh5KSchRWjsLKUVh5FnZknk9MJ7wUtXGikdZfQEg4ZDEde0-nntVaX-KYpQnECfsDyBR1aw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Elshiekh, M. E.</creator><creator>Mansour, D. A.</creator><creator>Azmy, A. M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130601</creationdate><title>Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter</title><author>Elshiekh, M. E. ; Mansour, D. A. ; Azmy, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6f80ddc3f4ca3b97ecd2f39c2c89b632005f77d7edb124416a20db3ec03c9cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Connection and protection apparatus</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Doubly fed induction generator (DFIG)</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>fault ride-through (FRT) capability</topic><topic>Generators</topic><topic>High voltage or high current generators</topic><topic>Limiting</topic><topic>Miscellaneous</topic><topic>Resistance</topic><topic>Rotors</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stators</topic><topic>Superconducting devices</topic><topic>superconducting fault current limiter (SFCL)</topic><topic>Various equipment and components</topic><topic>Voltage fluctuations</topic><topic>wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elshiekh, M. E.</creatorcontrib><creatorcontrib>Mansour, D. A.</creatorcontrib><creatorcontrib>Azmy, A. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elshiekh, M. E.</au><au>Mansour, D. A.</au><au>Azmy, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>5601204</spage><epage>5601204</epage><pages>5601204-5601204</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at the stator side and improve the fault ride-through (FRT) capability of the system. To highlight the proposed technique, a doubly fed induction generator (DFIG) is considered as a wind-turbine generator, where the whole system is simulated using PSCAD/EMTDC software. Detailed simulation results are obtained with and without SFCL considering stator and rotor currents. In addition, the voltage profile at the generator terminals is analyzed. The effect of limiting resistance value is also investigated. The obtained results ensure that the SFCL is effective in decreasing the fault current. Moreover, both the voltage dip at the generator terminals and the reactive power consumption from the grid are decreased during the fault. The voltage dip characteristics are discussed in accordance with international grid codes for wind turbines.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2012.2235132</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.5601204-5601204
issn 1051-8223
1558-2515
language eng
recordid cdi_pascalfrancis_primary_27529612
source IEEE Electronic Library (IEL)
subjects Applied sciences
Connection and protection apparatus
Direct energy conversion and energy accumulation
Doubly fed induction generator (DFIG)
Electrical engineering. Electrical power engineering
Electrical power engineering
Electronics
Exact sciences and technology
fault ride-through (FRT) capability
Generators
High voltage or high current generators
Limiting
Miscellaneous
Resistance
Rotors
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Stators
Superconducting devices
superconducting fault current limiter (SFCL)
Various equipment and components
Voltage fluctuations
wind turbine
Wind turbines
title Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Fault%20Ride-Through%20Capability%20of%20DFIG-Based%20Wind%20Turbine%20Using%20Superconducting%20Fault%20Current%20Limiter&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Elshiekh,%20M.%20E.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=5601204&rft.epage=5601204&rft.pages=5601204-5601204&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2012.2235132&rft_dat=%3Cpascalfrancis_RIE%3E27529612%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6387267&rfr_iscdi=true