Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter
With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.5601204-5601204 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5601204 |
---|---|
container_issue | 3 |
container_start_page | 5601204 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 23 |
creator | Elshiekh, M. E. Mansour, D. A. Azmy, A. M. |
description | With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at the stator side and improve the fault ride-through (FRT) capability of the system. To highlight the proposed technique, a doubly fed induction generator (DFIG) is considered as a wind-turbine generator, where the whole system is simulated using PSCAD/EMTDC software. Detailed simulation results are obtained with and without SFCL considering stator and rotor currents. In addition, the voltage profile at the generator terminals is analyzed. The effect of limiting resistance value is also investigated. The obtained results ensure that the SFCL is effective in decreasing the fault current. Moreover, both the voltage dip at the generator terminals and the reactive power consumption from the grid are decreased during the fault. The voltage dip characteristics are discussed in accordance with international grid codes for wind turbines. |
doi_str_mv | 10.1109/TASC.2012.2235132 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27529612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6387267</ieee_id><sourcerecordid>27529612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6f80ddc3f4ca3b97ecd2f39c2c89b632005f77d7edb124416a20db3ec03c9cb53</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRsFZ_gLiZjcvEmTuZPJY12looCDbFZZjMox1JkzCTCP33NrTU1b1wzncWH0KPlISUkuylmK3zEAiFEIBxyuAKTSjnaQCc8uvjTzgN0mN2i-68_yGERmnEJ6hZ7jvX_tpmi-diqHv8ZZUOip1rh-0O56ITla1tf8CtwW_z5SJ4FV4r_G0bhYvBVbbReONHfD102sm2UYPs_-fywTnd9Hhl97bX7h7dGFF7_XC-U7SZvxf5R7D6XCzz2SqQkPE-iE1KlJLMRFKwKku0VGBYJkGmWRUzIISbJFGJVhWFKKKxAKIqpiVhMpMVZ1NET7vStd47bcrO2b1wh5KSchRWjsLKUVh5FnZknk9MJ7wUtXGikdZfQEg4ZDEde0-nntVaX-KYpQnECfsDyBR1aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter</title><source>IEEE Electronic Library (IEL)</source><creator>Elshiekh, M. E. ; Mansour, D. A. ; Azmy, A. M.</creator><creatorcontrib>Elshiekh, M. E. ; Mansour, D. A. ; Azmy, A. M.</creatorcontrib><description>With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at the stator side and improve the fault ride-through (FRT) capability of the system. To highlight the proposed technique, a doubly fed induction generator (DFIG) is considered as a wind-turbine generator, where the whole system is simulated using PSCAD/EMTDC software. Detailed simulation results are obtained with and without SFCL considering stator and rotor currents. In addition, the voltage profile at the generator terminals is analyzed. The effect of limiting resistance value is also investigated. The obtained results ensure that the SFCL is effective in decreasing the fault current. Moreover, both the voltage dip at the generator terminals and the reactive power consumption from the grid are decreased during the fault. The voltage dip characteristics are discussed in accordance with international grid codes for wind turbines.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2235132</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Connection and protection apparatus ; Direct energy conversion and energy accumulation ; Doubly fed induction generator (DFIG) ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electronics ; Exact sciences and technology ; fault ride-through (FRT) capability ; Generators ; High voltage or high current generators ; Limiting ; Miscellaneous ; Resistance ; Rotors ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stators ; Superconducting devices ; superconducting fault current limiter (SFCL) ; Various equipment and components ; Voltage fluctuations ; wind turbine ; Wind turbines</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.5601204-5601204</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-6f80ddc3f4ca3b97ecd2f39c2c89b632005f77d7edb124416a20db3ec03c9cb53</citedby><cites>FETCH-LOGICAL-c295t-6f80ddc3f4ca3b97ecd2f39c2c89b632005f77d7edb124416a20db3ec03c9cb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6387267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23934,23935,25144,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6387267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27529612$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Elshiekh, M. E.</creatorcontrib><creatorcontrib>Mansour, D. A.</creatorcontrib><creatorcontrib>Azmy, A. M.</creatorcontrib><title>Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at the stator side and improve the fault ride-through (FRT) capability of the system. To highlight the proposed technique, a doubly fed induction generator (DFIG) is considered as a wind-turbine generator, where the whole system is simulated using PSCAD/EMTDC software. Detailed simulation results are obtained with and without SFCL considering stator and rotor currents. In addition, the voltage profile at the generator terminals is analyzed. The effect of limiting resistance value is also investigated. The obtained results ensure that the SFCL is effective in decreasing the fault current. Moreover, both the voltage dip at the generator terminals and the reactive power consumption from the grid are decreased during the fault. The voltage dip characteristics are discussed in accordance with international grid codes for wind turbines.</description><subject>Applied sciences</subject><subject>Connection and protection apparatus</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Doubly fed induction generator (DFIG)</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>fault ride-through (FRT) capability</subject><subject>Generators</subject><subject>High voltage or high current generators</subject><subject>Limiting</subject><subject>Miscellaneous</subject><subject>Resistance</subject><subject>Rotors</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stators</subject><subject>Superconducting devices</subject><subject>superconducting fault current limiter (SFCL)</subject><subject>Various equipment and components</subject><subject>Voltage fluctuations</subject><subject>wind turbine</subject><subject>Wind turbines</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkEtLw0AUhQdRsFZ_gLiZjcvEmTuZPJY12looCDbFZZjMox1JkzCTCP33NrTU1b1wzncWH0KPlISUkuylmK3zEAiFEIBxyuAKTSjnaQCc8uvjTzgN0mN2i-68_yGERmnEJ6hZ7jvX_tpmi-diqHv8ZZUOip1rh-0O56ITla1tf8CtwW_z5SJ4FV4r_G0bhYvBVbbReONHfD102sm2UYPs_-fywTnd9Hhl97bX7h7dGFF7_XC-U7SZvxf5R7D6XCzz2SqQkPE-iE1KlJLMRFKwKku0VGBYJkGmWRUzIISbJFGJVhWFKKKxAKIqpiVhMpMVZ1NET7vStd47bcrO2b1wh5KSchRWjsLKUVh5FnZknk9MJ7wUtXGikdZfQEg4ZDEde0-nntVaX-KYpQnECfsDyBR1aw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Elshiekh, M. E.</creator><creator>Mansour, D. A.</creator><creator>Azmy, A. M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130601</creationdate><title>Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter</title><author>Elshiekh, M. E. ; Mansour, D. A. ; Azmy, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6f80ddc3f4ca3b97ecd2f39c2c89b632005f77d7edb124416a20db3ec03c9cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Connection and protection apparatus</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Doubly fed induction generator (DFIG)</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>fault ride-through (FRT) capability</topic><topic>Generators</topic><topic>High voltage or high current generators</topic><topic>Limiting</topic><topic>Miscellaneous</topic><topic>Resistance</topic><topic>Rotors</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stators</topic><topic>Superconducting devices</topic><topic>superconducting fault current limiter (SFCL)</topic><topic>Various equipment and components</topic><topic>Voltage fluctuations</topic><topic>wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elshiekh, M. E.</creatorcontrib><creatorcontrib>Mansour, D. A.</creatorcontrib><creatorcontrib>Azmy, A. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elshiekh, M. E.</au><au>Mansour, D. A.</au><au>Azmy, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>5601204</spage><epage>5601204</epage><pages>5601204-5601204</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at the stator side and improve the fault ride-through (FRT) capability of the system. To highlight the proposed technique, a doubly fed induction generator (DFIG) is considered as a wind-turbine generator, where the whole system is simulated using PSCAD/EMTDC software. Detailed simulation results are obtained with and without SFCL considering stator and rotor currents. In addition, the voltage profile at the generator terminals is analyzed. The effect of limiting resistance value is also investigated. The obtained results ensure that the SFCL is effective in decreasing the fault current. Moreover, both the voltage dip at the generator terminals and the reactive power consumption from the grid are decreased during the fault. The voltage dip characteristics are discussed in accordance with international grid codes for wind turbines.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2012.2235132</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.5601204-5601204 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_pascalfrancis_primary_27529612 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Connection and protection apparatus Direct energy conversion and energy accumulation Doubly fed induction generator (DFIG) Electrical engineering. Electrical power engineering Electrical power engineering Electronics Exact sciences and technology fault ride-through (FRT) capability Generators High voltage or high current generators Limiting Miscellaneous Resistance Rotors Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Stators Superconducting devices superconducting fault current limiter (SFCL) Various equipment and components Voltage fluctuations wind turbine Wind turbines |
title | Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Fault%20Ride-Through%20Capability%20of%20DFIG-Based%20Wind%20Turbine%20Using%20Superconducting%20Fault%20Current%20Limiter&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Elshiekh,%20M.%20E.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=5601204&rft.epage=5601204&rft.pages=5601204-5601204&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2012.2235132&rft_dat=%3Cpascalfrancis_RIE%3E27529612%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6387267&rfr_iscdi=true |