Controlling radiative loss in quantum well solar cells

The inclusion of quantum well layers in a solar cell provides a means for extending the absorption and therefore increasing the photocurrent of the cell. In 2009, a single-junction GaAsP/InGaAs quantum well solar cell attained a peak efficiency of 28.3% under solar concentration. Since then InGaP/MQ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2013-07, Vol.46 (26), p.264007-1-8
Hauptverfasser: Ekins-Daukes, N J, Lee, K-H, Hirst, L, Chan, A, Führer, M, Adams, J, Browne, B, Barnham, K W J, Stavrinou, P, Connolly, J., Roberts, J S, Stevens, B, Airey, R, Kennedy, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inclusion of quantum well layers in a solar cell provides a means for extending the absorption and therefore increasing the photocurrent of the cell. In 2009, a single-junction GaAsP/InGaAs quantum well solar cell attained a peak efficiency of 28.3% under solar concentration. Since then InGaP/MQW/Ge quantum well devices have attained efficiencies in excess of 40% under concentration and over 30% under AM0. The principle motivation for incorporating a quantum well stack into a multi-junction solar cell is to increase the photocurrent delivered by the middle junction over the conventional In0.01GaAs bulk junction. This enables additional current to flow through the top and middle cells, resulting in a sharp rise in efficiency. However, quantum wells also provide some freedom to manipulate the radiative recombination in the quantum well solar cell. We show that under radiatively dominated, anisotropic emission, strong radiative coupling between sub-cells takes place, resulting in a multi-junction solar cell that is tolerant to daily and seasonal changes to the solar spectrum.
ISSN:0022-3727
1361-6463
DOI:10.1088/0022-3727/46/26/264007