Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives

Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2013-05, Vol.50 (3), p.694-707
Hauptverfasser: Da Ronch, A, McCracken, A. J, Badcock, K. J, Widhalm, M, Campobasso, M. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 3
container_start_page 694
container_title Journal of aircraft
container_volume 50
creator Da Ronch, A
McCracken, A. J
Badcock, K. J
Widhalm, M
Campobasso, M. S
description Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fast computation of forced periodic motions using the Euler equations. Three methods are evaluated. The first is computation in the time domain, which provides the benchmark solution in the sense that the time-accurate solution is obtained. Two acceleration techniques in the frequency domain are compared. The first uses a harmonic solution of the linearized problem, referred to as the linear frequency-domain approach. The second uses the harmonic balance method, which approximates the nonlinear problem using a number of Fourier modes. These approaches are compared for the ability to predict dynamic derivatives and for computational cost. The NACA 0012 aerofoil and the DLR-F12 passenger jet wind-tunnel model are the test cases. Compared to time-domain simulations, an order of magnitude reduction in computational costs is achieved and satisfactory predictions are obtained for cases with a narrow frequency spectrum and moderate amplitudes using the frequency-domain methods.
doi_str_mv 10.2514/1.C031674
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27484923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2991971071</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-f67f1df83c7c8d6598b824f5c245732a86df683be7698c35faa193c7adcd59b63</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWKsL_8GAKLqYmtfksdRWrVCoC10Pt5kEUjqZmrSF_ntTWkQUXN3F_e65h3MQuiR4QCvC78lgiBkRkh-hHqkYK5kS6hj1MKakVELoU3SW0hxjrLCUPTSd-GAhFs_Rfq5tMNti1LXgQwGhKcYQ2y54UzzCAoKxxVu0jTcr34VUdK4YbQO0eT2y0W9g5Tc2naMTB4tkLw6zjz6en96H43IyfXkdPkxK4ISvSiekI41TzEijGlFpNVOUu8pQXklGQYnGCcVmVgqtDKscANEZhsY0lZ4J1ke3e91l7LLxtKpbn4xdZJ-2W6c6R0AEoYKwjF79QufdOobsrqZcM6K0FPQ_ijAhcIW5xpm621MmdilF6-pl9C3EbU1wvSugJvWhgMxeHxQhGVi4mCP06fuASq64pjt_N3sOPMCPr38EvwAjU44b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1366050490</pqid></control><display><type>article</type><title>Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives</title><source>Alma/SFX Local Collection</source><creator>Da Ronch, A ; McCracken, A. J ; Badcock, K. J ; Widhalm, M ; Campobasso, M. S</creator><creatorcontrib>Da Ronch, A ; McCracken, A. J ; Badcock, K. J ; Widhalm, M ; Campobasso, M. S</creatorcontrib><description>Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fast computation of forced periodic motions using the Euler equations. Three methods are evaluated. The first is computation in the time domain, which provides the benchmark solution in the sense that the time-accurate solution is obtained. Two acceleration techniques in the frequency domain are compared. The first uses a harmonic solution of the linearized problem, referred to as the linear frequency-domain approach. The second uses the harmonic balance method, which approximates the nonlinear problem using a number of Fourier modes. These approaches are compared for the ability to predict dynamic derivatives and for computational cost. The NACA 0012 aerofoil and the DLR-F12 passenger jet wind-tunnel model are the test cases. Compared to time-domain simulations, an order of magnitude reduction in computational costs is achieved and satisfactory predictions are obtained for cases with a narrow frequency spectrum and moderate amplitudes using the frequency-domain methods.</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C031674</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamic forces ; Aerodynamics ; Air transportation and traffic ; Aircraft ; Airfoils ; Applied sciences ; Approximation ; Computational efficiency ; Computational fluid dynamics ; Computing costs ; Derivatives ; Dynamics ; Engineering schools ; Euler-Lagrange equation ; Exact sciences and technology ; Fluid dynamics ; Frequency domain analysis ; Frequency domains ; Frequency spectrum ; Ground, air and sea transportation, marine construction ; Harmonic balance method ; Mathematical models ; Model testing ; Passenger aircraft ; Reynolds number ; Simulation ; Studies ; Time domain analysis ; Wind tunnel models ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Journal of aircraft, 2013-05, Vol.50 (3), p.694-707</ispartof><rights>Copyright © 2012 by A. Da Ronch, A.J. McCracken, K.J. Badcock, M. Widhalm, and M.S. Campobasso. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 by A. Da Ronch, A.J. McCracken, K.J. Badcock, M. Widhalm, and M.S. Campobasso. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1542-3868/13 and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2012 by A. Da Ronch, A.J. McCracken, K.J. Badcock, M. Widhalm, and M.S. Campobasso. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3868/13 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-f67f1df83c7c8d6598b824f5c245732a86df683be7698c35faa193c7adcd59b63</citedby><cites>FETCH-LOGICAL-a414t-f67f1df83c7c8d6598b824f5c245732a86df683be7698c35faa193c7adcd59b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27484923$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Da Ronch, A</creatorcontrib><creatorcontrib>McCracken, A. J</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><creatorcontrib>Widhalm, M</creatorcontrib><creatorcontrib>Campobasso, M. S</creatorcontrib><title>Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives</title><title>Journal of aircraft</title><description>Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fast computation of forced periodic motions using the Euler equations. Three methods are evaluated. The first is computation in the time domain, which provides the benchmark solution in the sense that the time-accurate solution is obtained. Two acceleration techniques in the frequency domain are compared. The first uses a harmonic solution of the linearized problem, referred to as the linear frequency-domain approach. The second uses the harmonic balance method, which approximates the nonlinear problem using a number of Fourier modes. These approaches are compared for the ability to predict dynamic derivatives and for computational cost. The NACA 0012 aerofoil and the DLR-F12 passenger jet wind-tunnel model are the test cases. Compared to time-domain simulations, an order of magnitude reduction in computational costs is achieved and satisfactory predictions are obtained for cases with a narrow frequency spectrum and moderate amplitudes using the frequency-domain methods.</description><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Air transportation and traffic</subject><subject>Aircraft</subject><subject>Airfoils</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computational efficiency</subject><subject>Computational fluid dynamics</subject><subject>Computing costs</subject><subject>Derivatives</subject><subject>Dynamics</subject><subject>Engineering schools</subject><subject>Euler-Lagrange equation</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Frequency domain analysis</subject><subject>Frequency domains</subject><subject>Frequency spectrum</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Harmonic balance method</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Passenger aircraft</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Studies</subject><subject>Time domain analysis</subject><subject>Wind tunnel models</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMoWKsL_8GAKLqYmtfksdRWrVCoC10Pt5kEUjqZmrSF_ntTWkQUXN3F_e65h3MQuiR4QCvC78lgiBkRkh-hHqkYK5kS6hj1MKakVELoU3SW0hxjrLCUPTSd-GAhFs_Rfq5tMNti1LXgQwGhKcYQ2y54UzzCAoKxxVu0jTcr34VUdK4YbQO0eT2y0W9g5Tc2naMTB4tkLw6zjz6en96H43IyfXkdPkxK4ISvSiekI41TzEijGlFpNVOUu8pQXklGQYnGCcVmVgqtDKscANEZhsY0lZ4J1ke3e91l7LLxtKpbn4xdZJ-2W6c6R0AEoYKwjF79QufdOobsrqZcM6K0FPQ_ijAhcIW5xpm621MmdilF6-pl9C3EbU1wvSugJvWhgMxeHxQhGVi4mCP06fuASq64pjt_N3sOPMCPr38EvwAjU44b</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Da Ronch, A</creator><creator>McCracken, A. J</creator><creator>Badcock, K. J</creator><creator>Widhalm, M</creator><creator>Campobasso, M. S</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>20130501</creationdate><title>Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives</title><author>Da Ronch, A ; McCracken, A. J ; Badcock, K. J ; Widhalm, M ; Campobasso, M. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-f67f1df83c7c8d6598b824f5c245732a86df683be7698c35faa193c7adcd59b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Air transportation and traffic</topic><topic>Aircraft</topic><topic>Airfoils</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computational efficiency</topic><topic>Computational fluid dynamics</topic><topic>Computing costs</topic><topic>Derivatives</topic><topic>Dynamics</topic><topic>Engineering schools</topic><topic>Euler-Lagrange equation</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Frequency domain analysis</topic><topic>Frequency domains</topic><topic>Frequency spectrum</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Harmonic balance method</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Passenger aircraft</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Studies</topic><topic>Time domain analysis</topic><topic>Wind tunnel models</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Ronch, A</creatorcontrib><creatorcontrib>McCracken, A. J</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><creatorcontrib>Widhalm, M</creatorcontrib><creatorcontrib>Campobasso, M. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Ronch, A</au><au>McCracken, A. J</au><au>Badcock, K. J</au><au>Widhalm, M</au><au>Campobasso, M. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives</atitle><jtitle>Journal of aircraft</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>50</volume><issue>3</issue><spage>694</spage><epage>707</epage><pages>694-707</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fast computation of forced periodic motions using the Euler equations. Three methods are evaluated. The first is computation in the time domain, which provides the benchmark solution in the sense that the time-accurate solution is obtained. Two acceleration techniques in the frequency domain are compared. The first uses a harmonic solution of the linearized problem, referred to as the linear frequency-domain approach. The second uses the harmonic balance method, which approximates the nonlinear problem using a number of Fourier modes. These approaches are compared for the ability to predict dynamic derivatives and for computational cost. The NACA 0012 aerofoil and the DLR-F12 passenger jet wind-tunnel model are the test cases. Compared to time-domain simulations, an order of magnitude reduction in computational costs is achieved and satisfactory predictions are obtained for cases with a narrow frequency spectrum and moderate amplitudes using the frequency-domain methods.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C031674</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2013-05, Vol.50 (3), p.694-707
issn 0021-8669
1533-3868
language eng
recordid cdi_pascalfrancis_primary_27484923
source Alma/SFX Local Collection
subjects Aerodynamic forces
Aerodynamics
Air transportation and traffic
Aircraft
Airfoils
Applied sciences
Approximation
Computational efficiency
Computational fluid dynamics
Computing costs
Derivatives
Dynamics
Engineering schools
Euler-Lagrange equation
Exact sciences and technology
Fluid dynamics
Frequency domain analysis
Frequency domains
Frequency spectrum
Ground, air and sea transportation, marine construction
Harmonic balance method
Mathematical models
Model testing
Passenger aircraft
Reynolds number
Simulation
Studies
Time domain analysis
Wind tunnel models
Wind tunnel testing
Wind tunnels
title Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Frequency%20Domain%20and%20Harmonic%20Balance%20Predictions%20of%20Dynamic%20Derivatives&rft.jtitle=Journal%20of%20aircraft&rft.au=Da%20Ronch,%20A&rft.date=2013-05-01&rft.volume=50&rft.issue=3&rft.spage=694&rft.epage=707&rft.pages=694-707&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.C031674&rft_dat=%3Cproquest_pasca%3E2991971071%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1366050490&rft_id=info:pmid/&rfr_iscdi=true