Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives
Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fas...
Gespeichert in:
Veröffentlicht in: | Journal of aircraft 2013-05, Vol.50 (3), p.694-707 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 707 |
---|---|
container_issue | 3 |
container_start_page | 694 |
container_title | Journal of aircraft |
container_volume | 50 |
creator | Da Ronch, A McCracken, A. J Badcock, K. J Widhalm, M Campobasso, M. S |
description | Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fast computation of forced periodic motions using the Euler equations. Three methods are evaluated. The first is computation in the time domain, which provides the benchmark solution in the sense that the time-accurate solution is obtained. Two acceleration techniques in the frequency domain are compared. The first uses a harmonic solution of the linearized problem, referred to as the linear frequency-domain approach. The second uses the harmonic balance method, which approximates the nonlinear problem using a number of Fourier modes. These approaches are compared for the ability to predict dynamic derivatives and for computational cost. The NACA 0012 aerofoil and the DLR-F12 passenger jet wind-tunnel model are the test cases. Compared to time-domain simulations, an order of magnitude reduction in computational costs is achieved and satisfactory predictions are obtained for cases with a narrow frequency spectrum and moderate amplitudes using the frequency-domain methods. |
doi_str_mv | 10.2514/1.C031674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27484923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2991971071</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-f67f1df83c7c8d6598b824f5c245732a86df683be7698c35faa193c7adcd59b63</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWKsL_8GAKLqYmtfksdRWrVCoC10Pt5kEUjqZmrSF_ntTWkQUXN3F_e65h3MQuiR4QCvC78lgiBkRkh-hHqkYK5kS6hj1MKakVELoU3SW0hxjrLCUPTSd-GAhFs_Rfq5tMNti1LXgQwGhKcYQ2y54UzzCAoKxxVu0jTcr34VUdK4YbQO0eT2y0W9g5Tc2naMTB4tkLw6zjz6en96H43IyfXkdPkxK4ISvSiekI41TzEijGlFpNVOUu8pQXklGQYnGCcVmVgqtDKscANEZhsY0lZ4J1ke3e91l7LLxtKpbn4xdZJ-2W6c6R0AEoYKwjF79QufdOobsrqZcM6K0FPQ_ijAhcIW5xpm621MmdilF6-pl9C3EbU1wvSugJvWhgMxeHxQhGVi4mCP06fuASq64pjt_N3sOPMCPr38EvwAjU44b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1366050490</pqid></control><display><type>article</type><title>Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives</title><source>Alma/SFX Local Collection</source><creator>Da Ronch, A ; McCracken, A. J ; Badcock, K. J ; Widhalm, M ; Campobasso, M. S</creator><creatorcontrib>Da Ronch, A ; McCracken, A. J ; Badcock, K. J ; Widhalm, M ; Campobasso, M. S</creatorcontrib><description>Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fast computation of forced periodic motions using the Euler equations. Three methods are evaluated. The first is computation in the time domain, which provides the benchmark solution in the sense that the time-accurate solution is obtained. Two acceleration techniques in the frequency domain are compared. The first uses a harmonic solution of the linearized problem, referred to as the linear frequency-domain approach. The second uses the harmonic balance method, which approximates the nonlinear problem using a number of Fourier modes. These approaches are compared for the ability to predict dynamic derivatives and for computational cost. The NACA 0012 aerofoil and the DLR-F12 passenger jet wind-tunnel model are the test cases. Compared to time-domain simulations, an order of magnitude reduction in computational costs is achieved and satisfactory predictions are obtained for cases with a narrow frequency spectrum and moderate amplitudes using the frequency-domain methods.</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C031674</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamic forces ; Aerodynamics ; Air transportation and traffic ; Aircraft ; Airfoils ; Applied sciences ; Approximation ; Computational efficiency ; Computational fluid dynamics ; Computing costs ; Derivatives ; Dynamics ; Engineering schools ; Euler-Lagrange equation ; Exact sciences and technology ; Fluid dynamics ; Frequency domain analysis ; Frequency domains ; Frequency spectrum ; Ground, air and sea transportation, marine construction ; Harmonic balance method ; Mathematical models ; Model testing ; Passenger aircraft ; Reynolds number ; Simulation ; Studies ; Time domain analysis ; Wind tunnel models ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Journal of aircraft, 2013-05, Vol.50 (3), p.694-707</ispartof><rights>Copyright © 2012 by A. Da Ronch, A.J. McCracken, K.J. Badcock, M. Widhalm, and M.S. Campobasso. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 by A. Da Ronch, A.J. McCracken, K.J. Badcock, M. Widhalm, and M.S. Campobasso. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1542-3868/13 and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2012 by A. Da Ronch, A.J. McCracken, K.J. Badcock, M. Widhalm, and M.S. Campobasso. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3868/13 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-f67f1df83c7c8d6598b824f5c245732a86df683be7698c35faa193c7adcd59b63</citedby><cites>FETCH-LOGICAL-a414t-f67f1df83c7c8d6598b824f5c245732a86df683be7698c35faa193c7adcd59b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27484923$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Da Ronch, A</creatorcontrib><creatorcontrib>McCracken, A. J</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><creatorcontrib>Widhalm, M</creatorcontrib><creatorcontrib>Campobasso, M. S</creatorcontrib><title>Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives</title><title>Journal of aircraft</title><description>Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fast computation of forced periodic motions using the Euler equations. Three methods are evaluated. The first is computation in the time domain, which provides the benchmark solution in the sense that the time-accurate solution is obtained. Two acceleration techniques in the frequency domain are compared. The first uses a harmonic solution of the linearized problem, referred to as the linear frequency-domain approach. The second uses the harmonic balance method, which approximates the nonlinear problem using a number of Fourier modes. These approaches are compared for the ability to predict dynamic derivatives and for computational cost. The NACA 0012 aerofoil and the DLR-F12 passenger jet wind-tunnel model are the test cases. Compared to time-domain simulations, an order of magnitude reduction in computational costs is achieved and satisfactory predictions are obtained for cases with a narrow frequency spectrum and moderate amplitudes using the frequency-domain methods.</description><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Air transportation and traffic</subject><subject>Aircraft</subject><subject>Airfoils</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computational efficiency</subject><subject>Computational fluid dynamics</subject><subject>Computing costs</subject><subject>Derivatives</subject><subject>Dynamics</subject><subject>Engineering schools</subject><subject>Euler-Lagrange equation</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Frequency domain analysis</subject><subject>Frequency domains</subject><subject>Frequency spectrum</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Harmonic balance method</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Passenger aircraft</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Studies</subject><subject>Time domain analysis</subject><subject>Wind tunnel models</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMoWKsL_8GAKLqYmtfksdRWrVCoC10Pt5kEUjqZmrSF_ntTWkQUXN3F_e65h3MQuiR4QCvC78lgiBkRkh-hHqkYK5kS6hj1MKakVELoU3SW0hxjrLCUPTSd-GAhFs_Rfq5tMNti1LXgQwGhKcYQ2y54UzzCAoKxxVu0jTcr34VUdK4YbQO0eT2y0W9g5Tc2naMTB4tkLw6zjz6en96H43IyfXkdPkxK4ISvSiekI41TzEijGlFpNVOUu8pQXklGQYnGCcVmVgqtDKscANEZhsY0lZ4J1ke3e91l7LLxtKpbn4xdZJ-2W6c6R0AEoYKwjF79QufdOobsrqZcM6K0FPQ_ijAhcIW5xpm621MmdilF6-pl9C3EbU1wvSugJvWhgMxeHxQhGVi4mCP06fuASq64pjt_N3sOPMCPr38EvwAjU44b</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Da Ronch, A</creator><creator>McCracken, A. J</creator><creator>Badcock, K. J</creator><creator>Widhalm, M</creator><creator>Campobasso, M. S</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>20130501</creationdate><title>Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives</title><author>Da Ronch, A ; McCracken, A. J ; Badcock, K. J ; Widhalm, M ; Campobasso, M. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-f67f1df83c7c8d6598b824f5c245732a86df683be7698c35faa193c7adcd59b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Air transportation and traffic</topic><topic>Aircraft</topic><topic>Airfoils</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computational efficiency</topic><topic>Computational fluid dynamics</topic><topic>Computing costs</topic><topic>Derivatives</topic><topic>Dynamics</topic><topic>Engineering schools</topic><topic>Euler-Lagrange equation</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Frequency domain analysis</topic><topic>Frequency domains</topic><topic>Frequency spectrum</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Harmonic balance method</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Passenger aircraft</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Studies</topic><topic>Time domain analysis</topic><topic>Wind tunnel models</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Ronch, A</creatorcontrib><creatorcontrib>McCracken, A. J</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><creatorcontrib>Widhalm, M</creatorcontrib><creatorcontrib>Campobasso, M. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Ronch, A</au><au>McCracken, A. J</au><au>Badcock, K. J</au><au>Widhalm, M</au><au>Campobasso, M. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives</atitle><jtitle>Journal of aircraft</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>50</volume><issue>3</issue><spage>694</spage><epage>707</epage><pages>694-707</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fast computation of forced periodic motions using the Euler equations. Three methods are evaluated. The first is computation in the time domain, which provides the benchmark solution in the sense that the time-accurate solution is obtained. Two acceleration techniques in the frequency domain are compared. The first uses a harmonic solution of the linearized problem, referred to as the linear frequency-domain approach. The second uses the harmonic balance method, which approximates the nonlinear problem using a number of Fourier modes. These approaches are compared for the ability to predict dynamic derivatives and for computational cost. The NACA 0012 aerofoil and the DLR-F12 passenger jet wind-tunnel model are the test cases. Compared to time-domain simulations, an order of magnitude reduction in computational costs is achieved and satisfactory predictions are obtained for cases with a narrow frequency spectrum and moderate amplitudes using the frequency-domain methods.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C031674</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8669 |
ispartof | Journal of aircraft, 2013-05, Vol.50 (3), p.694-707 |
issn | 0021-8669 1533-3868 |
language | eng |
recordid | cdi_pascalfrancis_primary_27484923 |
source | Alma/SFX Local Collection |
subjects | Aerodynamic forces Aerodynamics Air transportation and traffic Aircraft Airfoils Applied sciences Approximation Computational efficiency Computational fluid dynamics Computing costs Derivatives Dynamics Engineering schools Euler-Lagrange equation Exact sciences and technology Fluid dynamics Frequency domain analysis Frequency domains Frequency spectrum Ground, air and sea transportation, marine construction Harmonic balance method Mathematical models Model testing Passenger aircraft Reynolds number Simulation Studies Time domain analysis Wind tunnel models Wind tunnel testing Wind tunnels |
title | Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Frequency%20Domain%20and%20Harmonic%20Balance%20Predictions%20of%20Dynamic%20Derivatives&rft.jtitle=Journal%20of%20aircraft&rft.au=Da%20Ronch,%20A&rft.date=2013-05-01&rft.volume=50&rft.issue=3&rft.spage=694&rft.epage=707&rft.pages=694-707&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.C031674&rft_dat=%3Cproquest_pasca%3E2991971071%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1366050490&rft_id=info:pmid/&rfr_iscdi=true |