Self-Amplified Dual Gate Charge Trap Flash Memory for Low-Voltage Operation

We propose a self-amplified charge trap Flash memory using the dual-gate (DG) mode operation based on the capacitive coupling between the front-gate and back-gate as a promising next-generation nonvolatile memory. It is found that the coupling ratio and memory window strongly depend on the thickness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2013-06, Vol.34 (6), p.756-758
Hauptverfasser: JANG, Ki-Hyun, JANG, Hyun-June, PARK, Jin-Kwon, CHO, Won-Ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 758
container_issue 6
container_start_page 756
container_title IEEE electron device letters
container_volume 34
creator JANG, Ki-Hyun
JANG, Hyun-June
PARK, Jin-Kwon
CHO, Won-Ju
description We propose a self-amplified charge trap Flash memory using the dual-gate (DG) mode operation based on the capacitive coupling between the front-gate and back-gate as a promising next-generation nonvolatile memory. It is found that the coupling ratio and memory window strongly depend on the thickness of the buried oxide (BOX) layer in the silicon-on-insulator (SOI) substrate. As the BOX thickness of the SOI substrate increases, the coupling ratio and memory window of Flash memory cells increase. The DG mode can obtain a larger memory window, reduced operation voltage, and improved reliability compared with the conventional single-gate mode operation.
doi_str_mv 10.1109/LED.2013.2256770
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27484879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6513279</ieee_id><sourcerecordid>2979186151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-f33a7a19fed71533f7a66ff8b539c637348e30c85fd6262544c786cf7991289b3</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKt7wc2ACG6m5v1Ylr4UK11Y3YY0TeyUtBmTKdJ_75QWF67u4nzncPkAuEWwhxBUT9PRsIchIj2MGRcCnoEOYkyWkHFyDjpQUFQSBPkluMp5DSGiVNAOeH13wZf9TR0qX7llMdyZUExM44rByqQvV8yTqYtxMHlVvLlNTPvCx1RM40_5GUNjWmJWu2SaKm6vwYU3Ibub0-2Cj_FoPngup7PJy6A_LS3FsCk9IUYYpLxbCsQI8cJw7r1cMKIsJ4JQ6Qi0kvklxxwzSq2Q3HqhFMJSLUgXPB536xS_dy43elNl60IwWxd3WSOKhFQEK9yi9__QddylbfudRoQxzLDAsqXgkbIp5pyc13WqNibtNYL6YFe3dvXBrj7ZbSsPp2GTrQk-ma2t8l8PCyqpFKrl7o5c5Zz7izlDBLfpL9s-f4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355252728</pqid></control><display><type>article</type><title>Self-Amplified Dual Gate Charge Trap Flash Memory for Low-Voltage Operation</title><source>IEEE Electronic Library (IEL)</source><creator>JANG, Ki-Hyun ; JANG, Hyun-June ; PARK, Jin-Kwon ; CHO, Won-Ju</creator><creatorcontrib>JANG, Ki-Hyun ; JANG, Hyun-June ; PARK, Jin-Kwon ; CHO, Won-Ju</creatorcontrib><description>We propose a self-amplified charge trap Flash memory using the dual-gate (DG) mode operation based on the capacitive coupling between the front-gate and back-gate as a promising next-generation nonvolatile memory. It is found that the coupling ratio and memory window strongly depend on the thickness of the buried oxide (BOX) layer in the silicon-on-insulator (SOI) substrate. As the BOX thickness of the SOI substrate increases, the coupling ratio and memory window of Flash memory cells increase. The DG mode can obtain a larger memory window, reduced operation voltage, and improved reliability compared with the conventional single-gate mode operation.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2013.2256770</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Buried oxide (BOX) ; capacitive coupling ; Charge ; charge trap Flash (CTF) ; coupling ratio ; Design. Technologies. Operation analysis. Testing ; Devices ; dual-gate (DG) ; Electric potential ; Electronics ; Exact sciences and technology ; Flash memory (computers) ; Gates ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Joining ; Magnetic and optical mass memories ; Oxides ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; silicon-on-insulator (SOI) ; Storage and reproduction of information ; Voltage</subject><ispartof>IEEE electron device letters, 2013-06, Vol.34 (6), p.756-758</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-f33a7a19fed71533f7a66ff8b539c637348e30c85fd6262544c786cf7991289b3</citedby><cites>FETCH-LOGICAL-c420t-f33a7a19fed71533f7a66ff8b539c637348e30c85fd6262544c786cf7991289b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6513279$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6513279$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27484879$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JANG, Ki-Hyun</creatorcontrib><creatorcontrib>JANG, Hyun-June</creatorcontrib><creatorcontrib>PARK, Jin-Kwon</creatorcontrib><creatorcontrib>CHO, Won-Ju</creatorcontrib><title>Self-Amplified Dual Gate Charge Trap Flash Memory for Low-Voltage Operation</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>We propose a self-amplified charge trap Flash memory using the dual-gate (DG) mode operation based on the capacitive coupling between the front-gate and back-gate as a promising next-generation nonvolatile memory. It is found that the coupling ratio and memory window strongly depend on the thickness of the buried oxide (BOX) layer in the silicon-on-insulator (SOI) substrate. As the BOX thickness of the SOI substrate increases, the coupling ratio and memory window of Flash memory cells increase. The DG mode can obtain a larger memory window, reduced operation voltage, and improved reliability compared with the conventional single-gate mode operation.</description><subject>Applied sciences</subject><subject>Buried oxide (BOX)</subject><subject>capacitive coupling</subject><subject>Charge</subject><subject>charge trap Flash (CTF)</subject><subject>coupling ratio</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>dual-gate (DG)</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flash memory (computers)</subject><subject>Gates</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Joining</subject><subject>Magnetic and optical mass memories</subject><subject>Oxides</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>silicon-on-insulator (SOI)</subject><subject>Storage and reproduction of information</subject><subject>Voltage</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEUhYMoWKt7wc2ACG6m5v1Ylr4UK11Y3YY0TeyUtBmTKdJ_75QWF67u4nzncPkAuEWwhxBUT9PRsIchIj2MGRcCnoEOYkyWkHFyDjpQUFQSBPkluMp5DSGiVNAOeH13wZf9TR0qX7llMdyZUExM44rByqQvV8yTqYtxMHlVvLlNTPvCx1RM40_5GUNjWmJWu2SaKm6vwYU3Ibub0-2Cj_FoPngup7PJy6A_LS3FsCk9IUYYpLxbCsQI8cJw7r1cMKIsJ4JQ6Qi0kvklxxwzSq2Q3HqhFMJSLUgXPB536xS_dy43elNl60IwWxd3WSOKhFQEK9yi9__QddylbfudRoQxzLDAsqXgkbIp5pyc13WqNibtNYL6YFe3dvXBrj7ZbSsPp2GTrQk-ma2t8l8PCyqpFKrl7o5c5Zz7izlDBLfpL9s-f4o</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>JANG, Ki-Hyun</creator><creator>JANG, Hyun-June</creator><creator>PARK, Jin-Kwon</creator><creator>CHO, Won-Ju</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Self-Amplified Dual Gate Charge Trap Flash Memory for Low-Voltage Operation</title><author>JANG, Ki-Hyun ; JANG, Hyun-June ; PARK, Jin-Kwon ; CHO, Won-Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-f33a7a19fed71533f7a66ff8b539c637348e30c85fd6262544c786cf7991289b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Buried oxide (BOX)</topic><topic>capacitive coupling</topic><topic>Charge</topic><topic>charge trap Flash (CTF)</topic><topic>coupling ratio</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>dual-gate (DG)</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flash memory (computers)</topic><topic>Gates</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Joining</topic><topic>Magnetic and optical mass memories</topic><topic>Oxides</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>silicon-on-insulator (SOI)</topic><topic>Storage and reproduction of information</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JANG, Ki-Hyun</creatorcontrib><creatorcontrib>JANG, Hyun-June</creatorcontrib><creatorcontrib>PARK, Jin-Kwon</creatorcontrib><creatorcontrib>CHO, Won-Ju</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JANG, Ki-Hyun</au><au>JANG, Hyun-June</au><au>PARK, Jin-Kwon</au><au>CHO, Won-Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Amplified Dual Gate Charge Trap Flash Memory for Low-Voltage Operation</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>34</volume><issue>6</issue><spage>756</spage><epage>758</epage><pages>756-758</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>We propose a self-amplified charge trap Flash memory using the dual-gate (DG) mode operation based on the capacitive coupling between the front-gate and back-gate as a promising next-generation nonvolatile memory. It is found that the coupling ratio and memory window strongly depend on the thickness of the buried oxide (BOX) layer in the silicon-on-insulator (SOI) substrate. As the BOX thickness of the SOI substrate increases, the coupling ratio and memory window of Flash memory cells increase. The DG mode can obtain a larger memory window, reduced operation voltage, and improved reliability compared with the conventional single-gate mode operation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2013.2256770</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2013-06, Vol.34 (6), p.756-758
issn 0741-3106
1558-0563
language eng
recordid cdi_pascalfrancis_primary_27484879
source IEEE Electronic Library (IEL)
subjects Applied sciences
Buried oxide (BOX)
capacitive coupling
Charge
charge trap Flash (CTF)
coupling ratio
Design. Technologies. Operation analysis. Testing
Devices
dual-gate (DG)
Electric potential
Electronics
Exact sciences and technology
Flash memory (computers)
Gates
Integrated circuits
Integrated circuits by function (including memories and processors)
Joining
Magnetic and optical mass memories
Oxides
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
silicon-on-insulator (SOI)
Storage and reproduction of information
Voltage
title Self-Amplified Dual Gate Charge Trap Flash Memory for Low-Voltage Operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Amplified%20Dual%20Gate%20Charge%20Trap%20Flash%20Memory%20for%20Low-Voltage%20Operation&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=JANG,%20Ki-Hyun&rft.date=2013-06-01&rft.volume=34&rft.issue=6&rft.spage=756&rft.epage=758&rft.pages=756-758&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2013.2256770&rft_dat=%3Cproquest_RIE%3E2979186151%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355252728&rft_id=info:pmid/&rft_ieee_id=6513279&rfr_iscdi=true