A PRESSURE-CORRECTION METHOD FOR SOLVING FLUID FLOW PROBLEMS ON A COLLOCATED GRID

A pressure-correction method for the SIMPLE-like algorithm is proposed on a curvilinear collocated grid for the solution of two-dimensional incompressible fluid flow problems, using a vertex-based finite-volume approximation. In the pressure-correction equation, a weighting factor (a fictitious time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical heat transfer. Part B, Fundamentals Fundamentals, 1997-07, Vol.32 (1), p.63-84
Hauptverfasser: Rahman, M.M., Siikonen, T., Miettinen, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 63
container_title Numerical heat transfer. Part B, Fundamentals
container_volume 32
creator Rahman, M.M.
Siikonen, T.
Miettinen, A.
description A pressure-correction method for the SIMPLE-like algorithm is proposed on a curvilinear collocated grid for the solution of two-dimensional incompressible fluid flow problems, using a vertex-based finite-volume approximation. In the pressure-correction equation, a weighting factor (a fictitious time step) is used as a substitute for the nodal contributions of the momentum equations. It serves as a limiter for the mass imbalance and provides an opportunity to avoid the pressure underrelaxation even when the source term effect in the momentum equations is dominant. The primitive formulation utilizes either the original Rhie-Chow (ORC) or the modified Rhie-Chow (MRC) flux correction at the cell face in discretizing the continuity equation to prevent the pressure oscillations. A comparative evaluation of the ORC and MRC schemes based on the computed results for a buoyancy-driven laminar flow in a half-concentric annulus shows that, on average, the MRC approach produces satisfactory stabilization for the iteration process. The effect of the weighting factor on the convergence of the mass residual is also investigated. The QUICK differencing combined with a deferred correction approach is adopted for the connective fluxes.
doi_str_mv 10.1080/10407799708914999
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_2740573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-7cbba1247ebefff2d6fc8eb00a6acdaf261afa103bd68a03ae582d94168b421c3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFY_gLc9eI3uv2YT8BLTtA2sXU1SPYbNJguVtCmbgPbbu1L1UsS5zDDzfo_hAXCN0S1GAbrDiCHOw5CjIMQsDMMTMMITgj3kE__Uze7uOQE6Bxd9_4ZcMcpG4DmCT1mS56ss8WKZZUlcpHIJH5NiIadwJjOYS_GSLudwJlap2wj56gj5IJLHHDplBGMphIyjIpnCeZZOL8GZUW3fXH33MVjNkiJeeELO0zgSnqacDh7XVaUwYbypGmMMqX2jg6ZCSPlK18oQHyujMKJV7QcKUdVMAlKHDPtBxQjWdAzwwVfbru9tY8qdXW-U3ZcYlV-ZlEeZOObmwOxUr1VrrNrqdf8LEs7QhFMn4wfZems6u1HvnW3rclD7trM_zJF5OXwMjrz_l6R___cJqF5_zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A PRESSURE-CORRECTION METHOD FOR SOLVING FLUID FLOW PROBLEMS ON A COLLOCATED GRID</title><source>Taylor &amp; Francis Journals Complete</source><creator>Rahman, M.M. ; Siikonen, T. ; Miettinen, A.</creator><creatorcontrib>Rahman, M.M. ; Siikonen, T. ; Miettinen, A.</creatorcontrib><description>A pressure-correction method for the SIMPLE-like algorithm is proposed on a curvilinear collocated grid for the solution of two-dimensional incompressible fluid flow problems, using a vertex-based finite-volume approximation. In the pressure-correction equation, a weighting factor (a fictitious time step) is used as a substitute for the nodal contributions of the momentum equations. It serves as a limiter for the mass imbalance and provides an opportunity to avoid the pressure underrelaxation even when the source term effect in the momentum equations is dominant. The primitive formulation utilizes either the original Rhie-Chow (ORC) or the modified Rhie-Chow (MRC) flux correction at the cell face in discretizing the continuity equation to prevent the pressure oscillations. A comparative evaluation of the ORC and MRC schemes based on the computed results for a buoyancy-driven laminar flow in a half-concentric annulus shows that, on average, the MRC approach produces satisfactory stabilization for the iteration process. The effect of the weighting factor on the convergence of the mass residual is also investigated. The QUICK differencing combined with a deferred correction approach is adopted for the connective fluxes.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407799708914999</identifier><identifier>CODEN: NHBFEE</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 1997-07, Vol.32 (1), p.63-84</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-7cbba1247ebefff2d6fc8eb00a6acdaf261afa103bd68a03ae582d94168b421c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10407799708914999$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10407799708914999$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2740573$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahman, M.M.</creatorcontrib><creatorcontrib>Siikonen, T.</creatorcontrib><creatorcontrib>Miettinen, A.</creatorcontrib><title>A PRESSURE-CORRECTION METHOD FOR SOLVING FLUID FLOW PROBLEMS ON A COLLOCATED GRID</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>A pressure-correction method for the SIMPLE-like algorithm is proposed on a curvilinear collocated grid for the solution of two-dimensional incompressible fluid flow problems, using a vertex-based finite-volume approximation. In the pressure-correction equation, a weighting factor (a fictitious time step) is used as a substitute for the nodal contributions of the momentum equations. It serves as a limiter for the mass imbalance and provides an opportunity to avoid the pressure underrelaxation even when the source term effect in the momentum equations is dominant. The primitive formulation utilizes either the original Rhie-Chow (ORC) or the modified Rhie-Chow (MRC) flux correction at the cell face in discretizing the continuity equation to prevent the pressure oscillations. A comparative evaluation of the ORC and MRC schemes based on the computed results for a buoyancy-driven laminar flow in a half-concentric annulus shows that, on average, the MRC approach produces satisfactory stabilization for the iteration process. The effect of the weighting factor on the convergence of the mass residual is also investigated. The QUICK differencing combined with a deferred correction approach is adopted for the connective fluxes.</description><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsFY_gLc9eI3uv2YT8BLTtA2sXU1SPYbNJguVtCmbgPbbu1L1UsS5zDDzfo_hAXCN0S1GAbrDiCHOw5CjIMQsDMMTMMITgj3kE__Uze7uOQE6Bxd9_4ZcMcpG4DmCT1mS56ss8WKZZUlcpHIJH5NiIadwJjOYS_GSLudwJlap2wj56gj5IJLHHDplBGMphIyjIpnCeZZOL8GZUW3fXH33MVjNkiJeeELO0zgSnqacDh7XVaUwYbypGmMMqX2jg6ZCSPlK18oQHyujMKJV7QcKUdVMAlKHDPtBxQjWdAzwwVfbru9tY8qdXW-U3ZcYlV-ZlEeZOObmwOxUr1VrrNrqdf8LEs7QhFMn4wfZems6u1HvnW3rclD7trM_zJF5OXwMjrz_l6R___cJqF5_zA</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Rahman, M.M.</creator><creator>Siikonen, T.</creator><creator>Miettinen, A.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970701</creationdate><title>A PRESSURE-CORRECTION METHOD FOR SOLVING FLUID FLOW PROBLEMS ON A COLLOCATED GRID</title><author>Rahman, M.M. ; Siikonen, T. ; Miettinen, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-7cbba1247ebefff2d6fc8eb00a6acdaf261afa103bd68a03ae582d94168b421c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, M.M.</creatorcontrib><creatorcontrib>Siikonen, T.</creatorcontrib><creatorcontrib>Miettinen, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, M.M.</au><au>Siikonen, T.</au><au>Miettinen, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PRESSURE-CORRECTION METHOD FOR SOLVING FLUID FLOW PROBLEMS ON A COLLOCATED GRID</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>1997-07-01</date><risdate>1997</risdate><volume>32</volume><issue>1</issue><spage>63</spage><epage>84</epage><pages>63-84</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><coden>NHBFEE</coden><abstract>A pressure-correction method for the SIMPLE-like algorithm is proposed on a curvilinear collocated grid for the solution of two-dimensional incompressible fluid flow problems, using a vertex-based finite-volume approximation. In the pressure-correction equation, a weighting factor (a fictitious time step) is used as a substitute for the nodal contributions of the momentum equations. It serves as a limiter for the mass imbalance and provides an opportunity to avoid the pressure underrelaxation even when the source term effect in the momentum equations is dominant. The primitive formulation utilizes either the original Rhie-Chow (ORC) or the modified Rhie-Chow (MRC) flux correction at the cell face in discretizing the continuity equation to prevent the pressure oscillations. A comparative evaluation of the ORC and MRC schemes based on the computed results for a buoyancy-driven laminar flow in a half-concentric annulus shows that, on average, the MRC approach produces satisfactory stabilization for the iteration process. The effect of the weighting factor on the convergence of the mass residual is also investigated. The QUICK differencing combined with a deferred correction approach is adopted for the connective fluxes.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10407799708914999</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-7790
ispartof Numerical heat transfer. Part B, Fundamentals, 1997-07, Vol.32 (1), p.63-84
issn 1040-7790
1521-0626
language eng
recordid cdi_pascalfrancis_primary_2740573
source Taylor & Francis Journals Complete
subjects Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
title A PRESSURE-CORRECTION METHOD FOR SOLVING FLUID FLOW PROBLEMS ON A COLLOCATED GRID
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PRESSURE-CORRECTION%20METHOD%20FOR%20SOLVING%20FLUID%20FLOW%20PROBLEMS%20ON%20A%20COLLOCATED%20GRID&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=Rahman,%20M.M.&rft.date=1997-07-01&rft.volume=32&rft.issue=1&rft.spage=63&rft.epage=84&rft.pages=63-84&rft.issn=1040-7790&rft.eissn=1521-0626&rft.coden=NHBFEE&rft_id=info:doi/10.1080/10407799708914999&rft_dat=%3Cpascalfrancis_cross%3E2740573%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true