Independent spanning trees of chordal rings

A chordal ring, denoted by CR(N, d), is a graph G = (V, E) with V = {0,1,..., N − 1} and E = {(u, v) | [v − u]N = 1 or d}, where 2 ≤ < N ≤ N/2 and [r]N denotes r modulo N. We show that for 2 ≤ d ≤ N/2, CR(N, d) has 4 independent spanning trees rooted at the same vertex, and for 2 ≤ d = N/2, CR(N,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Iwasaki, Yukihiro, Kajiwara, Yuka, Obokata, Koji, Igarashi, Yoshihide
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue
container_start_page 431
container_title
container_volume
creator Iwasaki, Yukihiro
Kajiwara, Yuka
Obokata, Koji
Igarashi, Yoshihide
description A chordal ring, denoted by CR(N, d), is a graph G = (V, E) with V = {0,1,..., N − 1} and E = {(u, v) | [v − u]N = 1 or d}, where 2 ≤ < N ≤ N/2 and [r]N denotes r modulo N. We show that for 2 ≤ d ≤ N/2, CR(N, d) has 4 independent spanning trees rooted at the same vertex, and for 2 ≤ d = N/2, CR(N, d) has 3 independent spanning trees rooted at the same vertex. We can design a fault-tolerant broadcasting scheme for CR(N, d) using independent spanning trees.
doi_str_mv 10.1007/BFb0045110
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2734938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1730-aed557c4d8c7de43468f22f2ff88ce9a8b038641db015b680baca73f4278159e3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxeM_sNZe_AR78CDI6iSTbJKjFquFghc9hySb6OqaXZJe_PZuqdDLG3jvxzDzCLmicEcB5P3jygFwQSkckYWWCgWHRgvGmmMyow2lNSLXJ4cMUUg4JTNAYLWWHM_JRSlfAMCkZjNyu05tGMMkaVuV0abUpY9qm0Mo1RAr_znk1vZVntxySc6i7UtY_M85eV89vS1f6s3r83r5sKk9lQi1Da0Q0vNWedkGjrxRkbHIYlTKB22VA1QNp60DKlyjwFlvJUbOpKJCB5yT6_3e0RZv-5ht8l0xY-5-bP41TE4vopqwmz1Wxt15IRs3DN_FUDC7rsyhK_wDKmpVBg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Independent spanning trees of chordal rings</title><source>Springer Books</source><creator>Iwasaki, Yukihiro ; Kajiwara, Yuka ; Obokata, Koji ; Igarashi, Yoshihide</creator><contributor>Lee, D. T. ; Jiang, Tao</contributor><creatorcontrib>Iwasaki, Yukihiro ; Kajiwara, Yuka ; Obokata, Koji ; Igarashi, Yoshihide ; Lee, D. T. ; Jiang, Tao</creatorcontrib><description>A chordal ring, denoted by CR(N, d), is a graph G = (V, E) with V = {0,1,..., N − 1} and E = {(u, v) | [v − u]N = 1 or d}, where 2 ≤ &lt; N ≤ N/2 and [r]N denotes r modulo N. We show that for 2 ≤ d ≤ N/2, CR(N, d) has 4 independent spanning trees rooted at the same vertex, and for 2 ≤ d = N/2, CR(N, d) has 3 independent spanning trees rooted at the same vertex. We can design a fault-tolerant broadcasting scheme for CR(N, d) using independent spanning trees.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540633570</identifier><identifier>ISBN: 354063357X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540695226</identifier><identifier>EISBN: 3540695222</identifier><identifier>DOI: 10.1007/BFb0045110</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Biconnected Graph ; Broadcasting Scheme ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Internal Vertex ; Source Vertex ; Span Tree ; Theoretical computing</subject><ispartof>Computing and Combinatorics, 2006, p.431-440</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1730-aed557c4d8c7de43468f22f2ff88ce9a8b038641db015b680baca73f4278159e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0045110$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0045110$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27912,38242,41429,42498</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2734938$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Lee, D. T.</contributor><contributor>Jiang, Tao</contributor><creatorcontrib>Iwasaki, Yukihiro</creatorcontrib><creatorcontrib>Kajiwara, Yuka</creatorcontrib><creatorcontrib>Obokata, Koji</creatorcontrib><creatorcontrib>Igarashi, Yoshihide</creatorcontrib><title>Independent spanning trees of chordal rings</title><title>Computing and Combinatorics</title><description>A chordal ring, denoted by CR(N, d), is a graph G = (V, E) with V = {0,1,..., N − 1} and E = {(u, v) | [v − u]N = 1 or d}, where 2 ≤ &lt; N ≤ N/2 and [r]N denotes r modulo N. We show that for 2 ≤ d ≤ N/2, CR(N, d) has 4 independent spanning trees rooted at the same vertex, and for 2 ≤ d = N/2, CR(N, d) has 3 independent spanning trees rooted at the same vertex. We can design a fault-tolerant broadcasting scheme for CR(N, d) using independent spanning trees.</description><subject>Applied sciences</subject><subject>Biconnected Graph</subject><subject>Broadcasting Scheme</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Internal Vertex</subject><subject>Source Vertex</subject><subject>Span Tree</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540633570</isbn><isbn>354063357X</isbn><isbn>9783540695226</isbn><isbn>3540695222</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkE9LAzEQxeM_sNZe_AR78CDI6iSTbJKjFquFghc9hySb6OqaXZJe_PZuqdDLG3jvxzDzCLmicEcB5P3jygFwQSkckYWWCgWHRgvGmmMyow2lNSLXJ4cMUUg4JTNAYLWWHM_JRSlfAMCkZjNyu05tGMMkaVuV0abUpY9qm0Mo1RAr_znk1vZVntxySc6i7UtY_M85eV89vS1f6s3r83r5sKk9lQi1Da0Q0vNWedkGjrxRkbHIYlTKB22VA1QNp60DKlyjwFlvJUbOpKJCB5yT6_3e0RZv-5ht8l0xY-5-bP41TE4vopqwmz1Wxt15IRs3DN_FUDC7rsyhK_wDKmpVBg</recordid><startdate>20060124</startdate><enddate>20060124</enddate><creator>Iwasaki, Yukihiro</creator><creator>Kajiwara, Yuka</creator><creator>Obokata, Koji</creator><creator>Igarashi, Yoshihide</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>20060124</creationdate><title>Independent spanning trees of chordal rings</title><author>Iwasaki, Yukihiro ; Kajiwara, Yuka ; Obokata, Koji ; Igarashi, Yoshihide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1730-aed557c4d8c7de43468f22f2ff88ce9a8b038641db015b680baca73f4278159e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Biconnected Graph</topic><topic>Broadcasting Scheme</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Internal Vertex</topic><topic>Source Vertex</topic><topic>Span Tree</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwasaki, Yukihiro</creatorcontrib><creatorcontrib>Kajiwara, Yuka</creatorcontrib><creatorcontrib>Obokata, Koji</creatorcontrib><creatorcontrib>Igarashi, Yoshihide</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwasaki, Yukihiro</au><au>Kajiwara, Yuka</au><au>Obokata, Koji</au><au>Igarashi, Yoshihide</au><au>Lee, D. T.</au><au>Jiang, Tao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Independent spanning trees of chordal rings</atitle><btitle>Computing and Combinatorics</btitle><date>2006-01-24</date><risdate>2006</risdate><spage>431</spage><epage>440</epage><pages>431-440</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540633570</isbn><isbn>354063357X</isbn><eisbn>9783540695226</eisbn><eisbn>3540695222</eisbn><abstract>A chordal ring, denoted by CR(N, d), is a graph G = (V, E) with V = {0,1,..., N − 1} and E = {(u, v) | [v − u]N = 1 or d}, where 2 ≤ &lt; N ≤ N/2 and [r]N denotes r modulo N. We show that for 2 ≤ d ≤ N/2, CR(N, d) has 4 independent spanning trees rooted at the same vertex, and for 2 ≤ d = N/2, CR(N, d) has 3 independent spanning trees rooted at the same vertex. We can design a fault-tolerant broadcasting scheme for CR(N, d) using independent spanning trees.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0045110</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computing and Combinatorics, 2006, p.431-440
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2734938
source Springer Books
subjects Applied sciences
Biconnected Graph
Broadcasting Scheme
Computer science
control theory
systems
Exact sciences and technology
Information retrieval. Graph
Internal Vertex
Source Vertex
Span Tree
Theoretical computing
title Independent spanning trees of chordal rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Independent%20spanning%20trees%20of%20chordal%20rings&rft.btitle=Computing%20and%20Combinatorics&rft.au=Iwasaki,%20Yukihiro&rft.date=2006-01-24&rft.spage=431&rft.epage=440&rft.pages=431-440&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540633570&rft.isbn_list=354063357X&rft_id=info:doi/10.1007/BFb0045110&rft_dat=%3Cpascalfrancis_sprin%3E2734938%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540695226&rft.eisbn_list=3540695222&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true