Independent spanning trees of chordal rings
A chordal ring, denoted by CR(N, d), is a graph G = (V, E) with V = {0,1,..., N − 1} and E = {(u, v) | [v − u]N = 1 or d}, where 2 ≤ < N ≤ N/2 and [r]N denotes r modulo N. We show that for 2 ≤ d ≤ N/2, CR(N, d) has 4 independent spanning trees rooted at the same vertex, and for 2 ≤ d = N/2, CR(N,...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | |
container_start_page | 431 |
container_title | |
container_volume | |
creator | Iwasaki, Yukihiro Kajiwara, Yuka Obokata, Koji Igarashi, Yoshihide |
description | A chordal ring, denoted by CR(N, d), is a graph G = (V, E) with V = {0,1,..., N − 1} and E = {(u, v) | [v − u]N = 1 or d}, where 2 ≤ < N ≤ N/2 and [r]N denotes r modulo N. We show that for 2 ≤ d ≤ N/2, CR(N, d) has 4 independent spanning trees rooted at the same vertex, and for 2 ≤ d = N/2, CR(N, d) has 3 independent spanning trees rooted at the same vertex. We can design a fault-tolerant broadcasting scheme for CR(N, d) using independent spanning trees. |
doi_str_mv | 10.1007/BFb0045110 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2734938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1730-aed557c4d8c7de43468f22f2ff88ce9a8b038641db015b680baca73f4278159e3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxeM_sNZe_AR78CDI6iSTbJKjFquFghc9hySb6OqaXZJe_PZuqdDLG3jvxzDzCLmicEcB5P3jygFwQSkckYWWCgWHRgvGmmMyow2lNSLXJ4cMUUg4JTNAYLWWHM_JRSlfAMCkZjNyu05tGMMkaVuV0abUpY9qm0Mo1RAr_znk1vZVntxySc6i7UtY_M85eV89vS1f6s3r83r5sKk9lQi1Da0Q0vNWedkGjrxRkbHIYlTKB22VA1QNp60DKlyjwFlvJUbOpKJCB5yT6_3e0RZv-5ht8l0xY-5-bP41TE4vopqwmz1Wxt15IRs3DN_FUDC7rsyhK_wDKmpVBg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Independent spanning trees of chordal rings</title><source>Springer Books</source><creator>Iwasaki, Yukihiro ; Kajiwara, Yuka ; Obokata, Koji ; Igarashi, Yoshihide</creator><contributor>Lee, D. T. ; Jiang, Tao</contributor><creatorcontrib>Iwasaki, Yukihiro ; Kajiwara, Yuka ; Obokata, Koji ; Igarashi, Yoshihide ; Lee, D. T. ; Jiang, Tao</creatorcontrib><description>A chordal ring, denoted by CR(N, d), is a graph G = (V, E) with V = {0,1,..., N − 1} and E = {(u, v) | [v − u]N = 1 or d}, where 2 ≤ < N ≤ N/2 and [r]N denotes r modulo N. We show that for 2 ≤ d ≤ N/2, CR(N, d) has 4 independent spanning trees rooted at the same vertex, and for 2 ≤ d = N/2, CR(N, d) has 3 independent spanning trees rooted at the same vertex. We can design a fault-tolerant broadcasting scheme for CR(N, d) using independent spanning trees.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540633570</identifier><identifier>ISBN: 354063357X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540695226</identifier><identifier>EISBN: 3540695222</identifier><identifier>DOI: 10.1007/BFb0045110</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Biconnected Graph ; Broadcasting Scheme ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Internal Vertex ; Source Vertex ; Span Tree ; Theoretical computing</subject><ispartof>Computing and Combinatorics, 2006, p.431-440</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1730-aed557c4d8c7de43468f22f2ff88ce9a8b038641db015b680baca73f4278159e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0045110$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0045110$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27912,38242,41429,42498</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2734938$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Lee, D. T.</contributor><contributor>Jiang, Tao</contributor><creatorcontrib>Iwasaki, Yukihiro</creatorcontrib><creatorcontrib>Kajiwara, Yuka</creatorcontrib><creatorcontrib>Obokata, Koji</creatorcontrib><creatorcontrib>Igarashi, Yoshihide</creatorcontrib><title>Independent spanning trees of chordal rings</title><title>Computing and Combinatorics</title><description>A chordal ring, denoted by CR(N, d), is a graph G = (V, E) with V = {0,1,..., N − 1} and E = {(u, v) | [v − u]N = 1 or d}, where 2 ≤ < N ≤ N/2 and [r]N denotes r modulo N. We show that for 2 ≤ d ≤ N/2, CR(N, d) has 4 independent spanning trees rooted at the same vertex, and for 2 ≤ d = N/2, CR(N, d) has 3 independent spanning trees rooted at the same vertex. We can design a fault-tolerant broadcasting scheme for CR(N, d) using independent spanning trees.</description><subject>Applied sciences</subject><subject>Biconnected Graph</subject><subject>Broadcasting Scheme</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Internal Vertex</subject><subject>Source Vertex</subject><subject>Span Tree</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540633570</isbn><isbn>354063357X</isbn><isbn>9783540695226</isbn><isbn>3540695222</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkE9LAzEQxeM_sNZe_AR78CDI6iSTbJKjFquFghc9hySb6OqaXZJe_PZuqdDLG3jvxzDzCLmicEcB5P3jygFwQSkckYWWCgWHRgvGmmMyow2lNSLXJ4cMUUg4JTNAYLWWHM_JRSlfAMCkZjNyu05tGMMkaVuV0abUpY9qm0Mo1RAr_znk1vZVntxySc6i7UtY_M85eV89vS1f6s3r83r5sKk9lQi1Da0Q0vNWedkGjrxRkbHIYlTKB22VA1QNp60DKlyjwFlvJUbOpKJCB5yT6_3e0RZv-5ht8l0xY-5-bP41TE4vopqwmz1Wxt15IRs3DN_FUDC7rsyhK_wDKmpVBg</recordid><startdate>20060124</startdate><enddate>20060124</enddate><creator>Iwasaki, Yukihiro</creator><creator>Kajiwara, Yuka</creator><creator>Obokata, Koji</creator><creator>Igarashi, Yoshihide</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>20060124</creationdate><title>Independent spanning trees of chordal rings</title><author>Iwasaki, Yukihiro ; Kajiwara, Yuka ; Obokata, Koji ; Igarashi, Yoshihide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1730-aed557c4d8c7de43468f22f2ff88ce9a8b038641db015b680baca73f4278159e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Biconnected Graph</topic><topic>Broadcasting Scheme</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Internal Vertex</topic><topic>Source Vertex</topic><topic>Span Tree</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwasaki, Yukihiro</creatorcontrib><creatorcontrib>Kajiwara, Yuka</creatorcontrib><creatorcontrib>Obokata, Koji</creatorcontrib><creatorcontrib>Igarashi, Yoshihide</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwasaki, Yukihiro</au><au>Kajiwara, Yuka</au><au>Obokata, Koji</au><au>Igarashi, Yoshihide</au><au>Lee, D. T.</au><au>Jiang, Tao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Independent spanning trees of chordal rings</atitle><btitle>Computing and Combinatorics</btitle><date>2006-01-24</date><risdate>2006</risdate><spage>431</spage><epage>440</epage><pages>431-440</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540633570</isbn><isbn>354063357X</isbn><eisbn>9783540695226</eisbn><eisbn>3540695222</eisbn><abstract>A chordal ring, denoted by CR(N, d), is a graph G = (V, E) with V = {0,1,..., N − 1} and E = {(u, v) | [v − u]N = 1 or d}, where 2 ≤ < N ≤ N/2 and [r]N denotes r modulo N. We show that for 2 ≤ d ≤ N/2, CR(N, d) has 4 independent spanning trees rooted at the same vertex, and for 2 ≤ d = N/2, CR(N, d) has 3 independent spanning trees rooted at the same vertex. We can design a fault-tolerant broadcasting scheme for CR(N, d) using independent spanning trees.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0045110</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computing and Combinatorics, 2006, p.431-440 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_2734938 |
source | Springer Books |
subjects | Applied sciences Biconnected Graph Broadcasting Scheme Computer science control theory systems Exact sciences and technology Information retrieval. Graph Internal Vertex Source Vertex Span Tree Theoretical computing |
title | Independent spanning trees of chordal rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Independent%20spanning%20trees%20of%20chordal%20rings&rft.btitle=Computing%20and%20Combinatorics&rft.au=Iwasaki,%20Yukihiro&rft.date=2006-01-24&rft.spage=431&rft.epage=440&rft.pages=431-440&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540633570&rft.isbn_list=354063357X&rft_id=info:doi/10.1007/BFb0045110&rft_dat=%3Cpascalfrancis_sprin%3E2734938%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540695226&rft.eisbn_list=3540695222&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |