Subtyping over a lattice (abstract)

This talk, in the first part, will overview the main advances in the area of subtyping for the simply typed lambda calculus. In the second part of the talk we will propose a new system of notations for types, which we call alternating direct acyclic graphs, and show that for a system of sybtype ineq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tiuryn, Jerzy
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue
container_start_page 84
container_title
container_volume
creator Tiuryn, Jerzy
description This talk, in the first part, will overview the main advances in the area of subtyping for the simply typed lambda calculus. In the second part of the talk we will propose a new system of notations for types, which we call alternating direct acyclic graphs, and show that for a system of sybtype inequalities over a lattice, if it has a solution then there is a solution whose alternating dag is of polynomial size in the size of the original system. There are examples showing that the well known dag representation of types is not good enough for this purpose, already for the two-element lattice.
doi_str_mv 10.1007/3-540-63385-5_34
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2733896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733896</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1384-b1c8f64181b81bcdcdfbcc02144e0b153ff06c646df733198fe7bfade41454e3</originalsourceid><addsrcrecordid>eNotkM1LAzEQxeMXWGvvHhf0oIfUmZ1sNnuU4hcUPNiDt5Bkk7K6tstmFfrfm7UdBgbm_WbgPcauEOYIUN4TLwRwSaQKXmgSR-yC0kZWCuTHMZugROREojo5CCNZnLIJEOS8KgWds1mMn5CK8hwIJ-z6_ccOu67ZrLPtr-8zk7VmGBrns1tj49AbN9xdsrNg2uhnhzllq6fH1eKFL9-eXxcPS94hKcEtOhWkQIU2tatdHaxzkKMQHiwWFAJIJ4WsQ0mElQq-tMHUXqAohKcpu9m_7Ux0pg292bgm6q5vvk2_03k6UpVM2HyPxaRs1r7Xdrv9ihpBjylp0sm6_veux5ToDxozVAA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Subtyping over a lattice (abstract)</title><source>Springer Books</source><creator>Tiuryn, Jerzy</creator><contributor>Leitsch, Alexander ; Gottlob, Georg ; Mundici, Daniele</contributor><creatorcontrib>Tiuryn, Jerzy ; Leitsch, Alexander ; Gottlob, Georg ; Mundici, Daniele</creatorcontrib><description>This talk, in the first part, will overview the main advances in the area of subtyping for the simply typed lambda calculus. In the second part of the talk we will propose a new system of notations for types, which we call alternating direct acyclic graphs, and show that for a system of sybtype inequalities over a lattice, if it has a solution then there is a solution whose alternating dag is of polynomial size in the size of the original system. There are examples showing that the well known dag representation of types is not good enough for this purpose, already for the two-element lattice.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540633855</identifier><identifier>ISBN: 9783540633853</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354069806X</identifier><identifier>EISBN: 9783540698067</identifier><identifier>DOI: 10.1007/3-540-63385-5_34</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Computational Logic and Proof Theory, 2005, p.84-88</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-63385-5_34$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-63385-5_34$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4049,4050,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2733896$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Leitsch, Alexander</contributor><contributor>Gottlob, Georg</contributor><contributor>Mundici, Daniele</contributor><creatorcontrib>Tiuryn, Jerzy</creatorcontrib><title>Subtyping over a lattice (abstract)</title><title>Computational Logic and Proof Theory</title><description>This talk, in the first part, will overview the main advances in the area of subtyping for the simply typed lambda calculus. In the second part of the talk we will propose a new system of notations for types, which we call alternating direct acyclic graphs, and show that for a system of sybtype inequalities over a lattice, if it has a solution then there is a solution whose alternating dag is of polynomial size in the size of the original system. There are examples showing that the well known dag representation of types is not good enough for this purpose, already for the two-element lattice.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540633855</isbn><isbn>9783540633853</isbn><isbn>354069806X</isbn><isbn>9783540698067</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1LAzEQxeMXWGvvHhf0oIfUmZ1sNnuU4hcUPNiDt5Bkk7K6tstmFfrfm7UdBgbm_WbgPcauEOYIUN4TLwRwSaQKXmgSR-yC0kZWCuTHMZugROREojo5CCNZnLIJEOS8KgWds1mMn5CK8hwIJ-z6_ccOu67ZrLPtr-8zk7VmGBrns1tj49AbN9xdsrNg2uhnhzllq6fH1eKFL9-eXxcPS94hKcEtOhWkQIU2tatdHaxzkKMQHiwWFAJIJ4WsQ0mElQq-tMHUXqAohKcpu9m_7Ux0pg292bgm6q5vvk2_03k6UpVM2HyPxaRs1r7Xdrv9ihpBjylp0sm6_veux5ToDxozVAA</recordid><startdate>20050608</startdate><enddate>20050608</enddate><creator>Tiuryn, Jerzy</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>20050608</creationdate><title>Subtyping over a lattice (abstract)</title><author>Tiuryn, Jerzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1384-b1c8f64181b81bcdcdfbcc02144e0b153ff06c646df733198fe7bfade41454e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiuryn, Jerzy</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiuryn, Jerzy</au><au>Leitsch, Alexander</au><au>Gottlob, Georg</au><au>Mundici, Daniele</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Subtyping over a lattice (abstract)</atitle><btitle>Computational Logic and Proof Theory</btitle><date>2005-06-08</date><risdate>2005</risdate><spage>84</spage><epage>88</epage><pages>84-88</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540633855</isbn><isbn>9783540633853</isbn><eisbn>354069806X</eisbn><eisbn>9783540698067</eisbn><abstract>This talk, in the first part, will overview the main advances in the area of subtyping for the simply typed lambda calculus. In the second part of the talk we will propose a new system of notations for types, which we call alternating direct acyclic graphs, and show that for a system of sybtype inequalities over a lattice, if it has a solution then there is a solution whose alternating dag is of polynomial size in the size of the original system. There are examples showing that the well known dag representation of types is not good enough for this purpose, already for the two-element lattice.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-63385-5_34</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Logic and Proof Theory, 2005, p.84-88
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2733896
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title Subtyping over a lattice (abstract)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Subtyping%20over%20a%20lattice%20(abstract)&rft.btitle=Computational%20Logic%20and%20Proof%20Theory&rft.au=Tiuryn,%20Jerzy&rft.date=2005-06-08&rft.spage=84&rft.epage=88&rft.pages=84-88&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540633855&rft.isbn_list=9783540633853&rft_id=info:doi/10.1007/3-540-63385-5_34&rft_dat=%3Cpascalfrancis_sprin%3E2733896%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=354069806X&rft.eisbn_list=9783540698067&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true