Subtyping over a lattice (abstract)
This talk, in the first part, will overview the main advances in the area of subtyping for the simply typed lambda calculus. In the second part of the talk we will propose a new system of notations for types, which we call alternating direct acyclic graphs, and show that for a system of sybtype ineq...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | |
container_start_page | 84 |
container_title | |
container_volume | |
creator | Tiuryn, Jerzy |
description | This talk, in the first part, will overview the main advances in the area of subtyping for the simply typed lambda calculus. In the second part of the talk we will propose a new system of notations for types, which we call alternating direct acyclic graphs, and show that for a system of sybtype inequalities over a lattice, if it has a solution then there is a solution whose alternating dag is of polynomial size in the size of the original system. There are examples showing that the well known dag representation of types is not good enough for this purpose, already for the two-element lattice. |
doi_str_mv | 10.1007/3-540-63385-5_34 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2733896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733896</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1384-b1c8f64181b81bcdcdfbcc02144e0b153ff06c646df733198fe7bfade41454e3</originalsourceid><addsrcrecordid>eNotkM1LAzEQxeMXWGvvHhf0oIfUmZ1sNnuU4hcUPNiDt5Bkk7K6tstmFfrfm7UdBgbm_WbgPcauEOYIUN4TLwRwSaQKXmgSR-yC0kZWCuTHMZugROREojo5CCNZnLIJEOS8KgWds1mMn5CK8hwIJ-z6_ccOu67ZrLPtr-8zk7VmGBrns1tj49AbN9xdsrNg2uhnhzllq6fH1eKFL9-eXxcPS94hKcEtOhWkQIU2tatdHaxzkKMQHiwWFAJIJ4WsQ0mElQq-tMHUXqAohKcpu9m_7Ux0pg292bgm6q5vvk2_03k6UpVM2HyPxaRs1r7Xdrv9ihpBjylp0sm6_veux5ToDxozVAA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Subtyping over a lattice (abstract)</title><source>Springer Books</source><creator>Tiuryn, Jerzy</creator><contributor>Leitsch, Alexander ; Gottlob, Georg ; Mundici, Daniele</contributor><creatorcontrib>Tiuryn, Jerzy ; Leitsch, Alexander ; Gottlob, Georg ; Mundici, Daniele</creatorcontrib><description>This talk, in the first part, will overview the main advances in the area of subtyping for the simply typed lambda calculus. In the second part of the talk we will propose a new system of notations for types, which we call alternating direct acyclic graphs, and show that for a system of sybtype inequalities over a lattice, if it has a solution then there is a solution whose alternating dag is of polynomial size in the size of the original system. There are examples showing that the well known dag representation of types is not good enough for this purpose, already for the two-element lattice.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540633855</identifier><identifier>ISBN: 9783540633853</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354069806X</identifier><identifier>EISBN: 9783540698067</identifier><identifier>DOI: 10.1007/3-540-63385-5_34</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Computational Logic and Proof Theory, 2005, p.84-88</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-63385-5_34$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-63385-5_34$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4049,4050,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2733896$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Leitsch, Alexander</contributor><contributor>Gottlob, Georg</contributor><contributor>Mundici, Daniele</contributor><creatorcontrib>Tiuryn, Jerzy</creatorcontrib><title>Subtyping over a lattice (abstract)</title><title>Computational Logic and Proof Theory</title><description>This talk, in the first part, will overview the main advances in the area of subtyping for the simply typed lambda calculus. In the second part of the talk we will propose a new system of notations for types, which we call alternating direct acyclic graphs, and show that for a system of sybtype inequalities over a lattice, if it has a solution then there is a solution whose alternating dag is of polynomial size in the size of the original system. There are examples showing that the well known dag representation of types is not good enough for this purpose, already for the two-element lattice.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540633855</isbn><isbn>9783540633853</isbn><isbn>354069806X</isbn><isbn>9783540698067</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1LAzEQxeMXWGvvHhf0oIfUmZ1sNnuU4hcUPNiDt5Bkk7K6tstmFfrfm7UdBgbm_WbgPcauEOYIUN4TLwRwSaQKXmgSR-yC0kZWCuTHMZugROREojo5CCNZnLIJEOS8KgWds1mMn5CK8hwIJ-z6_ccOu67ZrLPtr-8zk7VmGBrns1tj49AbN9xdsrNg2uhnhzllq6fH1eKFL9-eXxcPS94hKcEtOhWkQIU2tatdHaxzkKMQHiwWFAJIJ4WsQ0mElQq-tMHUXqAohKcpu9m_7Ux0pg292bgm6q5vvk2_03k6UpVM2HyPxaRs1r7Xdrv9ihpBjylp0sm6_veux5ToDxozVAA</recordid><startdate>20050608</startdate><enddate>20050608</enddate><creator>Tiuryn, Jerzy</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>20050608</creationdate><title>Subtyping over a lattice (abstract)</title><author>Tiuryn, Jerzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1384-b1c8f64181b81bcdcdfbcc02144e0b153ff06c646df733198fe7bfade41454e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiuryn, Jerzy</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiuryn, Jerzy</au><au>Leitsch, Alexander</au><au>Gottlob, Georg</au><au>Mundici, Daniele</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Subtyping over a lattice (abstract)</atitle><btitle>Computational Logic and Proof Theory</btitle><date>2005-06-08</date><risdate>2005</risdate><spage>84</spage><epage>88</epage><pages>84-88</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540633855</isbn><isbn>9783540633853</isbn><eisbn>354069806X</eisbn><eisbn>9783540698067</eisbn><abstract>This talk, in the first part, will overview the main advances in the area of subtyping for the simply typed lambda calculus. In the second part of the talk we will propose a new system of notations for types, which we call alternating direct acyclic graphs, and show that for a system of sybtype inequalities over a lattice, if it has a solution then there is a solution whose alternating dag is of polynomial size in the size of the original system. There are examples showing that the well known dag representation of types is not good enough for this purpose, already for the two-element lattice.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-63385-5_34</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computational Logic and Proof Theory, 2005, p.84-88 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_2733896 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact sciences and technology Theoretical computing |
title | Subtyping over a lattice (abstract) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Subtyping%20over%20a%20lattice%20(abstract)&rft.btitle=Computational%20Logic%20and%20Proof%20Theory&rft.au=Tiuryn,%20Jerzy&rft.date=2005-06-08&rft.spage=84&rft.epage=88&rft.pages=84-88&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540633855&rft.isbn_list=9783540633853&rft_id=info:doi/10.1007/3-540-63385-5_34&rft_dat=%3Cpascalfrancis_sprin%3E2733896%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=354069806X&rft.eisbn_list=9783540698067&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |