Selecting most adaptable diagnostic solutions through Pivoting-Based Retrieval

The aim of the present paper is to investigate a retrieval strategy for case-based diagnosis called Pivoting Based Retrieval (PBR), based on a tight integration between retrieval and adaptation estimation. It exploits a heuristic estimate of the adaptability of a solution; during retrieval, lower an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Portinale, Luigi, Torasso, Pietro, Magro, Diego
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue
container_start_page 393
container_title
container_volume
creator Portinale, Luigi
Torasso, Pietro
Magro, Diego
description The aim of the present paper is to investigate a retrieval strategy for case-based diagnosis called Pivoting Based Retrieval (PBR), based on a tight integration between retrieval and adaptation estimation. It exploits a heuristic estimate of the adaptability of a solution; during retrieval, lower and upper bounds for such an estimate are computed for relevant cases and a pivot case is selected, determining which cases have to be considered and which have not. Such a technique has been evaluated on three different domain models and very satisfactory results have been obtained both in terms of accuracy, space and retrieval time
doi_str_mv 10.1007/3-540-63233-6_509
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2732217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732217</sourcerecordid><originalsourceid>FETCH-LOGICAL-j290t-626a3b186b86f28235e5086a3098560455a02740fecc1f63e5ccf4b435b3b2883</originalsourceid><addsrcrecordid>eNpFkMlOwzAQhs0mUZU-ALccuJqOPbbjHKFikypALGfLcZ3UJU2qOK3E2-MWJOYy0r-MNB8hlwyuGUA-RSoFUIUckSojoTgikyLXmFRVcNTqmIyYYowiiuLk39sX8lMyAgROi1zgOZnEuII0yFkuxYg8v_vGuyG0dbbu4pDZhd0Mtmx8tgi2bpMUXBa7ZjuEro3ZsOy7bb3MXsOu25forY1-kb35oQ9-Z5sLclbZJvrJ3x6Tz_u7j9kjnb88PM1u5nTFCxio4spiybQqtaq45ii9BJ00KLRUIKS0wHMBlXeOVQq9dK4SpUBZYsm1xjG5-r27sdHZpupt60I0mz6sbf9teI48PZhi099YTE5b-96UXfcVDQOzB2vQJEzmwMkcwOIPfNJlkQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Selecting most adaptable diagnostic solutions through Pivoting-Based Retrieval</title><source>Springer Books</source><creator>Portinale, Luigi ; Torasso, Pietro ; Magro, Diego</creator><contributor>Leake, David B. ; Plaza, Enric</contributor><creatorcontrib>Portinale, Luigi ; Torasso, Pietro ; Magro, Diego ; Leake, David B. ; Plaza, Enric</creatorcontrib><description>The aim of the present paper is to investigate a retrieval strategy for case-based diagnosis called Pivoting Based Retrieval (PBR), based on a tight integration between retrieval and adaptation estimation. It exploits a heuristic estimate of the adaptability of a solution; during retrieval, lower and upper bounds for such an estimate are computed for relevant cases and a pivot case is selected, determining which cases have to be considered and which have not. Such a technique has been evaluated on three different domain models and very satisfactory results have been obtained both in terms of accuracy, space and retrieval time</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540632337</identifier><identifier>ISBN: 3540632336</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540692386</identifier><identifier>EISBN: 354069238X</identifier><identifier>DOI: 10.1007/3-540-63233-6_509</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation Effort ; Applied sciences ; Artificial intelligence ; Case Memory ; Computer science; control theory; systems ; Exact sciences and technology ; Heuristic Estimate ; Input Case ; Learning and adaptive systems ; Retrieval Time</subject><ispartof>Case-Based Reasoning Research and Development, 1997, p.393-402</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-63233-6_509$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-63233-6_509$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2732217$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Leake, David B.</contributor><contributor>Plaza, Enric</contributor><creatorcontrib>Portinale, Luigi</creatorcontrib><creatorcontrib>Torasso, Pietro</creatorcontrib><creatorcontrib>Magro, Diego</creatorcontrib><title>Selecting most adaptable diagnostic solutions through Pivoting-Based Retrieval</title><title>Case-Based Reasoning Research and Development</title><description>The aim of the present paper is to investigate a retrieval strategy for case-based diagnosis called Pivoting Based Retrieval (PBR), based on a tight integration between retrieval and adaptation estimation. It exploits a heuristic estimate of the adaptability of a solution; during retrieval, lower and upper bounds for such an estimate are computed for relevant cases and a pivot case is selected, determining which cases have to be considered and which have not. Such a technique has been evaluated on three different domain models and very satisfactory results have been obtained both in terms of accuracy, space and retrieval time</description><subject>Adaptation Effort</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Case Memory</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Heuristic Estimate</subject><subject>Input Case</subject><subject>Learning and adaptive systems</subject><subject>Retrieval Time</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540632337</isbn><isbn>3540632336</isbn><isbn>9783540692386</isbn><isbn>354069238X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkMlOwzAQhs0mUZU-ALccuJqOPbbjHKFikypALGfLcZ3UJU2qOK3E2-MWJOYy0r-MNB8hlwyuGUA-RSoFUIUckSojoTgikyLXmFRVcNTqmIyYYowiiuLk39sX8lMyAgROi1zgOZnEuII0yFkuxYg8v_vGuyG0dbbu4pDZhd0Mtmx8tgi2bpMUXBa7ZjuEro3ZsOy7bb3MXsOu25forY1-kb35oQ9-Z5sLclbZJvrJ3x6Tz_u7j9kjnb88PM1u5nTFCxio4spiybQqtaq45ii9BJ00KLRUIKS0wHMBlXeOVQq9dK4SpUBZYsm1xjG5-r27sdHZpupt60I0mz6sbf9teI48PZhi099YTE5b-96UXfcVDQOzB2vQJEzmwMkcwOIPfNJlkQ</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Portinale, Luigi</creator><creator>Torasso, Pietro</creator><creator>Magro, Diego</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>19970101</creationdate><title>Selecting most adaptable diagnostic solutions through Pivoting-Based Retrieval</title><author>Portinale, Luigi ; Torasso, Pietro ; Magro, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j290t-626a3b186b86f28235e5086a3098560455a02740fecc1f63e5ccf4b435b3b2883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Adaptation Effort</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Case Memory</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Heuristic Estimate</topic><topic>Input Case</topic><topic>Learning and adaptive systems</topic><topic>Retrieval Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Portinale, Luigi</creatorcontrib><creatorcontrib>Torasso, Pietro</creatorcontrib><creatorcontrib>Magro, Diego</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Portinale, Luigi</au><au>Torasso, Pietro</au><au>Magro, Diego</au><au>Leake, David B.</au><au>Plaza, Enric</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Selecting most adaptable diagnostic solutions through Pivoting-Based Retrieval</atitle><btitle>Case-Based Reasoning Research and Development</btitle><date>1997-01-01</date><risdate>1997</risdate><spage>393</spage><epage>402</epage><pages>393-402</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540632337</isbn><isbn>3540632336</isbn><eisbn>9783540692386</eisbn><eisbn>354069238X</eisbn><abstract>The aim of the present paper is to investigate a retrieval strategy for case-based diagnosis called Pivoting Based Retrieval (PBR), based on a tight integration between retrieval and adaptation estimation. It exploits a heuristic estimate of the adaptability of a solution; during retrieval, lower and upper bounds for such an estimate are computed for relevant cases and a pivot case is selected, determining which cases have to be considered and which have not. Such a technique has been evaluated on three different domain models and very satisfactory results have been obtained both in terms of accuracy, space and retrieval time</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-63233-6_509</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Case-Based Reasoning Research and Development, 1997, p.393-402
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2732217
source Springer Books
subjects Adaptation Effort
Applied sciences
Artificial intelligence
Case Memory
Computer science
control theory
systems
Exact sciences and technology
Heuristic Estimate
Input Case
Learning and adaptive systems
Retrieval Time
title Selecting most adaptable diagnostic solutions through Pivoting-Based Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Selecting%20most%20adaptable%20diagnostic%20solutions%20through%20Pivoting-Based%20Retrieval&rft.btitle=Case-Based%20Reasoning%20Research%20and%20Development&rft.au=Portinale,%20Luigi&rft.date=1997-01-01&rft.spage=393&rft.epage=402&rft.pages=393-402&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540632337&rft.isbn_list=3540632336&rft_id=info:doi/10.1007/3-540-63233-6_509&rft_dat=%3Cpascalfrancis_sprin%3E2732217%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540692386&rft.eisbn_list=354069238X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true