Catalytic Performance and in Situ Surface Chemistry of Pure α‑MnO2 Nanorods in Selective Reduction of NO and N2O with CO

Search of catalysts made of nonprecious metal for reduction of nitric oxide is important for having a sustainable environment. Catalytic performances of α-MnO2 nanorods in reduction of nitric oxide and nitrous oxide by carbon monoxide were investigated. Surface chemistry of α-MnO2 catalyst during ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-04, Vol.117 (16), p.8329-8335
Hauptverfasser: Shan, Junjun, Zhu, Yuan, Zhang, Shiran, Zhu, Tong, Rouvimov, Sergei, Tao, Franklin (Feng)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8335
container_issue 16
container_start_page 8329
container_title Journal of physical chemistry. C
container_volume 117
creator Shan, Junjun
Zhu, Yuan
Zhang, Shiran
Zhu, Tong
Rouvimov, Sergei
Tao, Franklin (Feng)
description Search of catalysts made of nonprecious metal for reduction of nitric oxide is important for having a sustainable environment. Catalytic performances of α-MnO2 nanorods in reduction of nitric oxide and nitrous oxide by carbon monoxide were investigated. Surface chemistry of α-MnO2 catalyst during catalysis was tracked with ambient pressure X-ray photoelectron spectroscopy. Correlation between catalytic performance and the corresponding in situ surface chemistry during catalysis revealed that Mn3+ ions and oxygen vacancies are active catalytic sites. Bulk phase of α-MnO2 nanorods below the catalyst surface is restructured to Mn3O4 in catalysis. Kinetics studies suggested that the reduction of nitric oxide with CO is performed through the formation of the intermediate N2O with a followed dissociation to N2. This study suggested restructuring of transition metal oxides can tune catalytic performance and even develop catalysts.
doi_str_mv 10.1021/jp4018103
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27317249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b662381963</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-c85eadf8f64cfaf26fe382d39f0576267ef8c5310b7c618e1a655fd97c39cd433</originalsourceid><addsrcrecordid>eNpFUEtOwzAUtBBIlMKCG3jDMuBPHCdLFPGTSlNRWEcPf1RXaVLZCShiwxU4ChfhEJyEtKCyeqOnmdHMIHRKyTkljF4s1zGhKSV8D41oxlkkYyH2dziWh-gohCUhghPKR-gthxaqvnUKz4y3jV9BrQyGWmNX47lrOzzvvIXhly_MyoXW97ixeNZ5g78-v98_7uuC4SnUjW902IpMZVTrXgx-MLobUFNvFNNi6zplBX517QLnxTE6sFAFc_J3x-jp-uoxv40mxc1dfjmJgFHRRioVBrRNbRIrC5Yl1vCUaZ5ZImTCEmlsqgSn5FmqhKaGQiKE1ZlUPFM65nyMzn591xAUVNYPFV0o196twPclk5xKFmf_PFChXDadr4dUJSXlZtlytyz_ART2bBk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalytic Performance and in Situ Surface Chemistry of Pure α‑MnO2 Nanorods in Selective Reduction of NO and N2O with CO</title><source>American Chemical Society Publications</source><creator>Shan, Junjun ; Zhu, Yuan ; Zhang, Shiran ; Zhu, Tong ; Rouvimov, Sergei ; Tao, Franklin (Feng)</creator><creatorcontrib>Shan, Junjun ; Zhu, Yuan ; Zhang, Shiran ; Zhu, Tong ; Rouvimov, Sergei ; Tao, Franklin (Feng)</creatorcontrib><description>Search of catalysts made of nonprecious metal for reduction of nitric oxide is important for having a sustainable environment. Catalytic performances of α-MnO2 nanorods in reduction of nitric oxide and nitrous oxide by carbon monoxide were investigated. Surface chemistry of α-MnO2 catalyst during catalysis was tracked with ambient pressure X-ray photoelectron spectroscopy. Correlation between catalytic performance and the corresponding in situ surface chemistry during catalysis revealed that Mn3+ ions and oxygen vacancies are active catalytic sites. Bulk phase of α-MnO2 nanorods below the catalyst surface is restructured to Mn3O4 in catalysis. Kinetics studies suggested that the reduction of nitric oxide with CO is performed through the formation of the intermediate N2O with a followed dissociation to N2. This study suggested restructuring of transition metal oxides can tune catalytic performance and even develop catalysts.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp4018103</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Catalysis ; Catalysts: preparations and properties ; Chemistry ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; General and physical chemistry ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Other topics in nanoscale materials and structures ; Physics ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of physical chemistry. C, 2013-04, Vol.117 (16), p.8329-8335</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp4018103$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp4018103$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27317249$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shan, Junjun</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Zhang, Shiran</creatorcontrib><creatorcontrib>Zhu, Tong</creatorcontrib><creatorcontrib>Rouvimov, Sergei</creatorcontrib><creatorcontrib>Tao, Franklin (Feng)</creatorcontrib><title>Catalytic Performance and in Situ Surface Chemistry of Pure α‑MnO2 Nanorods in Selective Reduction of NO and N2O with CO</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Search of catalysts made of nonprecious metal for reduction of nitric oxide is important for having a sustainable environment. Catalytic performances of α-MnO2 nanorods in reduction of nitric oxide and nitrous oxide by carbon monoxide were investigated. Surface chemistry of α-MnO2 catalyst during catalysis was tracked with ambient pressure X-ray photoelectron spectroscopy. Correlation between catalytic performance and the corresponding in situ surface chemistry during catalysis revealed that Mn3+ ions and oxygen vacancies are active catalytic sites. Bulk phase of α-MnO2 nanorods below the catalyst surface is restructured to Mn3O4 in catalysis. Kinetics studies suggested that the reduction of nitric oxide with CO is performed through the formation of the intermediate N2O with a followed dissociation to N2. This study suggested restructuring of transition metal oxides can tune catalytic performance and even develop catalysts.</description><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFUEtOwzAUtBBIlMKCG3jDMuBPHCdLFPGTSlNRWEcPf1RXaVLZCShiwxU4ChfhEJyEtKCyeqOnmdHMIHRKyTkljF4s1zGhKSV8D41oxlkkYyH2dziWh-gohCUhghPKR-gthxaqvnUKz4y3jV9BrQyGWmNX47lrOzzvvIXhly_MyoXW97ixeNZ5g78-v98_7uuC4SnUjW902IpMZVTrXgx-MLobUFNvFNNi6zplBX517QLnxTE6sFAFc_J3x-jp-uoxv40mxc1dfjmJgFHRRioVBrRNbRIrC5Yl1vCUaZ5ZImTCEmlsqgSn5FmqhKaGQiKE1ZlUPFM65nyMzn591xAUVNYPFV0o196twPclk5xKFmf_PFChXDadr4dUJSXlZtlytyz_ART2bBk</recordid><startdate>20130425</startdate><enddate>20130425</enddate><creator>Shan, Junjun</creator><creator>Zhu, Yuan</creator><creator>Zhang, Shiran</creator><creator>Zhu, Tong</creator><creator>Rouvimov, Sergei</creator><creator>Tao, Franklin (Feng)</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20130425</creationdate><title>Catalytic Performance and in Situ Surface Chemistry of Pure α‑MnO2 Nanorods in Selective Reduction of NO and N2O with CO</title><author>Shan, Junjun ; Zhu, Yuan ; Zhang, Shiran ; Zhu, Tong ; Rouvimov, Sergei ; Tao, Franklin (Feng)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-c85eadf8f64cfaf26fe382d39f0576267ef8c5310b7c618e1a655fd97c39cd433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Junjun</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Zhang, Shiran</creatorcontrib><creatorcontrib>Zhu, Tong</creatorcontrib><creatorcontrib>Rouvimov, Sergei</creatorcontrib><creatorcontrib>Tao, Franklin (Feng)</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Junjun</au><au>Zhu, Yuan</au><au>Zhang, Shiran</au><au>Zhu, Tong</au><au>Rouvimov, Sergei</au><au>Tao, Franklin (Feng)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Performance and in Situ Surface Chemistry of Pure α‑MnO2 Nanorods in Selective Reduction of NO and N2O with CO</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-04-25</date><risdate>2013</risdate><volume>117</volume><issue>16</issue><spage>8329</spage><epage>8335</epage><pages>8329-8335</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Search of catalysts made of nonprecious metal for reduction of nitric oxide is important for having a sustainable environment. Catalytic performances of α-MnO2 nanorods in reduction of nitric oxide and nitrous oxide by carbon monoxide were investigated. Surface chemistry of α-MnO2 catalyst during catalysis was tracked with ambient pressure X-ray photoelectron spectroscopy. Correlation between catalytic performance and the corresponding in situ surface chemistry during catalysis revealed that Mn3+ ions and oxygen vacancies are active catalytic sites. Bulk phase of α-MnO2 nanorods below the catalyst surface is restructured to Mn3O4 in catalysis. Kinetics studies suggested that the reduction of nitric oxide with CO is performed through the formation of the intermediate N2O with a followed dissociation to N2. This study suggested restructuring of transition metal oxides can tune catalytic performance and even develop catalysts.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp4018103</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-04, Vol.117 (16), p.8329-8335
issn 1932-7447
1932-7455
language eng
recordid cdi_pascalfrancis_primary_27317249
source American Chemical Society Publications
subjects Catalysis
Catalysts: preparations and properties
Chemistry
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
General and physical chemistry
Materials science
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanotubes
Other topics in nanoscale materials and structures
Physics
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Catalytic Performance and in Situ Surface Chemistry of Pure α‑MnO2 Nanorods in Selective Reduction of NO and N2O with CO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Performance%20and%20in%20Situ%20Surface%20Chemistry%20of%20Pure%20%CE%B1%E2%80%91MnO2%20Nanorods%20in%20Selective%20Reduction%20of%20NO%20and%20N2O%20with%20CO&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Shan,%20Junjun&rft.date=2013-04-25&rft.volume=117&rft.issue=16&rft.spage=8329&rft.epage=8335&rft.pages=8329-8335&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp4018103&rft_dat=%3Cacs_pasca%3Eb662381963%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true