Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover

We introduce the concept of generalization for models of functional neuroactivation, and show how it is affected by the number, N, of neuroimaging scans available. By plotting generalization as a function of N (i.e. a “learning curve”) we demonstrate that while simple, linear models may generalize b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mørch, Niels, Hansen, Lars K., Strother, Stephen C., Svarer, Claus, Rottenberg, David A., Lautrup, Benny, Savoy, Robert, Paulson, Olaf B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue
container_start_page 259
container_title
container_volume
creator Mørch, Niels
Hansen, Lars K.
Strother, Stephen C.
Svarer, Claus
Rottenberg, David A.
Lautrup, Benny
Savoy, Robert
Paulson, Olaf B.
description We introduce the concept of generalization for models of functional neuroactivation, and show how it is affected by the number, N, of neuroimaging scans available. By plotting generalization as a function of N (i.e. a “learning curve”) we demonstrate that while simple, linear models may generalize better for small N's, more flexible, low-biased nonlinear models, based on artificial neural networks (ANN's), generalize better for larger N's. We demonstrate that for sets of scans of two simple motor tasks—one set acquired with [O15]water using PET, and the other using fMRI—practical N's exist for which “generalization crossover” occurs. This observation supports the application of highly flexible, ANN models to sufficiently large functional activation datasets.
doi_str_mv 10.1007/3-540-63046-5_20
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2731616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a1ef494106dc43bf36ebec585afba8bc8087234a3b6d42349ae2880b592b7fc43</originalsourceid><addsrcrecordid>eNotkElPwzAQhc0mUUrvHH3g6jJe4iTcUMUmVXCBs2U7ThRI7cpuKsGvx6Gdy2zvjUYfQjcUlhSgvOOkEEAkByFJoRicoCueJ7KGEuAUzaiklHAu6rPjYlIW52gGHBipS8Ev0SKlL8jBGa8rNkPdW_BD752OeO9iGhM-dpvQuCHh3uN29HbXB68H7N0YQ7_RXe-7e7zOOp8rbMe4dwlr3-DOeRf10P_qyYJtDCmFfPkaXbR6SG5xzHP0-fT4sXoh6_fn19XDmlhWwo5o6lpRCwqysYKblktnnC2qQrdGV8ZWUJWMC82NbEQuau1YVYEpambKNlvm6PZwd6uT1UMbtbd9UtuYv44_ipU8U5JZtjzIUt74zkVlQvhOioKaUCuuMj_1D1BNqPkf629u0Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover</title><source>Springer Books</source><creator>Mørch, Niels ; Hansen, Lars K. ; Strother, Stephen C. ; Svarer, Claus ; Rottenberg, David A. ; Lautrup, Benny ; Savoy, Robert ; Paulson, Olaf B.</creator><contributor>Duncan, James ; Gindi, Gene</contributor><creatorcontrib>Mørch, Niels ; Hansen, Lars K. ; Strother, Stephen C. ; Svarer, Claus ; Rottenberg, David A. ; Lautrup, Benny ; Savoy, Robert ; Paulson, Olaf B. ; Duncan, James ; Gindi, Gene</creatorcontrib><description>We introduce the concept of generalization for models of functional neuroactivation, and show how it is affected by the number, N, of neuroimaging scans available. By plotting generalization as a function of N (i.e. a “learning curve”) we demonstrate that while simple, linear models may generalize better for small N's, more flexible, low-biased nonlinear models, based on artificial neural networks (ANN's), generalize better for larger N's. We demonstrate that for sets of scans of two simple motor tasks—one set acquired with [O15]water using PET, and the other using fMRI—practical N's exist for which “generalization crossover” occurs. This observation supports the application of highly flexible, ANN models to sufficiently large functional activation datasets.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540630465</identifier><identifier>ISBN: 9783540630463</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540690700</identifier><identifier>EISBN: 9783540690702</identifier><identifier>DOI: 10.1007/3-540-63046-5_20</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; generalization ; ill-posed learning ; learning curves ; Medical sciences ; Models and simulation ; Multivariate brain modeling</subject><ispartof>Information Processing in Medical Imaging, 1997, p.259-270</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-a1ef494106dc43bf36ebec585afba8bc8087234a3b6d42349ae2880b592b7fc43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-63046-5_20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-63046-5_20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2731616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Duncan, James</contributor><contributor>Gindi, Gene</contributor><creatorcontrib>Mørch, Niels</creatorcontrib><creatorcontrib>Hansen, Lars K.</creatorcontrib><creatorcontrib>Strother, Stephen C.</creatorcontrib><creatorcontrib>Svarer, Claus</creatorcontrib><creatorcontrib>Rottenberg, David A.</creatorcontrib><creatorcontrib>Lautrup, Benny</creatorcontrib><creatorcontrib>Savoy, Robert</creatorcontrib><creatorcontrib>Paulson, Olaf B.</creatorcontrib><title>Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover</title><title>Information Processing in Medical Imaging</title><description>We introduce the concept of generalization for models of functional neuroactivation, and show how it is affected by the number, N, of neuroimaging scans available. By plotting generalization as a function of N (i.e. a “learning curve”) we demonstrate that while simple, linear models may generalize better for small N's, more flexible, low-biased nonlinear models, based on artificial neural networks (ANN's), generalize better for larger N's. We demonstrate that for sets of scans of two simple motor tasks—one set acquired with [O15]water using PET, and the other using fMRI—practical N's exist for which “generalization crossover” occurs. This observation supports the application of highly flexible, ANN models to sufficiently large functional activation datasets.</description><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>generalization</subject><subject>ill-posed learning</subject><subject>learning curves</subject><subject>Medical sciences</subject><subject>Models and simulation</subject><subject>Multivariate brain modeling</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540630465</isbn><isbn>9783540630463</isbn><isbn>3540690700</isbn><isbn>9783540690702</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkElPwzAQhc0mUUrvHH3g6jJe4iTcUMUmVXCBs2U7ThRI7cpuKsGvx6Gdy2zvjUYfQjcUlhSgvOOkEEAkByFJoRicoCueJ7KGEuAUzaiklHAu6rPjYlIW52gGHBipS8Ev0SKlL8jBGa8rNkPdW_BD752OeO9iGhM-dpvQuCHh3uN29HbXB68H7N0YQ7_RXe-7e7zOOp8rbMe4dwlr3-DOeRf10P_qyYJtDCmFfPkaXbR6SG5xzHP0-fT4sXoh6_fn19XDmlhWwo5o6lpRCwqysYKblktnnC2qQrdGV8ZWUJWMC82NbEQuau1YVYEpambKNlvm6PZwd6uT1UMbtbd9UtuYv44_ipU8U5JZtjzIUt74zkVlQvhOioKaUCuuMj_1D1BNqPkf629u0Q</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Mørch, Niels</creator><creator>Hansen, Lars K.</creator><creator>Strother, Stephen C.</creator><creator>Svarer, Claus</creator><creator>Rottenberg, David A.</creator><creator>Lautrup, Benny</creator><creator>Savoy, Robert</creator><creator>Paulson, Olaf B.</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>19970101</creationdate><title>Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover</title><author>Mørch, Niels ; Hansen, Lars K. ; Strother, Stephen C. ; Svarer, Claus ; Rottenberg, David A. ; Lautrup, Benny ; Savoy, Robert ; Paulson, Olaf B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a1ef494106dc43bf36ebec585afba8bc8087234a3b6d42349ae2880b592b7fc43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>generalization</topic><topic>ill-posed learning</topic><topic>learning curves</topic><topic>Medical sciences</topic><topic>Models and simulation</topic><topic>Multivariate brain modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mørch, Niels</creatorcontrib><creatorcontrib>Hansen, Lars K.</creatorcontrib><creatorcontrib>Strother, Stephen C.</creatorcontrib><creatorcontrib>Svarer, Claus</creatorcontrib><creatorcontrib>Rottenberg, David A.</creatorcontrib><creatorcontrib>Lautrup, Benny</creatorcontrib><creatorcontrib>Savoy, Robert</creatorcontrib><creatorcontrib>Paulson, Olaf B.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mørch, Niels</au><au>Hansen, Lars K.</au><au>Strother, Stephen C.</au><au>Svarer, Claus</au><au>Rottenberg, David A.</au><au>Lautrup, Benny</au><au>Savoy, Robert</au><au>Paulson, Olaf B.</au><au>Duncan, James</au><au>Gindi, Gene</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover</atitle><btitle>Information Processing in Medical Imaging</btitle><date>1997-01-01</date><risdate>1997</risdate><spage>259</spage><epage>270</epage><pages>259-270</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540630465</isbn><isbn>9783540630463</isbn><eisbn>3540690700</eisbn><eisbn>9783540690702</eisbn><abstract>We introduce the concept of generalization for models of functional neuroactivation, and show how it is affected by the number, N, of neuroimaging scans available. By plotting generalization as a function of N (i.e. a “learning curve”) we demonstrate that while simple, linear models may generalize better for small N's, more flexible, low-biased nonlinear models, based on artificial neural networks (ANN's), generalize better for larger N's. We demonstrate that for sets of scans of two simple motor tasks—one set acquired with [O15]water using PET, and the other using fMRI—practical N's exist for which “generalization crossover” occurs. This observation supports the application of highly flexible, ANN models to sufficiently large functional activation datasets.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-63046-5_20</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Information Processing in Medical Imaging, 1997, p.259-270
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2731616
source Springer Books
subjects Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
generalization
ill-posed learning
learning curves
Medical sciences
Models and simulation
Multivariate brain modeling
title Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20versus%20linear%20models%20in%20functional%20neuroimaging:%20Learning%20curves%20and%20generalization%20crossover&rft.btitle=Information%20Processing%20in%20Medical%20Imaging&rft.au=M%C3%B8rch,%20Niels&rft.date=1997-01-01&rft.spage=259&rft.epage=270&rft.pages=259-270&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540630465&rft.isbn_list=9783540630463&rft_id=info:doi/10.1007/3-540-63046-5_20&rft_dat=%3Cpascalfrancis_sprin%3E2731616%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540690700&rft.eisbn_list=9783540690702&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true