Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover
We introduce the concept of generalization for models of functional neuroactivation, and show how it is affected by the number, N, of neuroimaging scans available. By plotting generalization as a function of N (i.e. a “learning curve”) we demonstrate that while simple, linear models may generalize b...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | |
container_start_page | 259 |
container_title | |
container_volume | |
creator | Mørch, Niels Hansen, Lars K. Strother, Stephen C. Svarer, Claus Rottenberg, David A. Lautrup, Benny Savoy, Robert Paulson, Olaf B. |
description | We introduce the concept of generalization for models of functional neuroactivation, and show how it is affected by the number, N, of neuroimaging scans available. By plotting generalization as a function of N (i.e. a “learning curve”) we demonstrate that while simple, linear models may generalize better for small N's, more flexible, low-biased nonlinear models, based on artificial neural networks (ANN's), generalize better for larger N's. We demonstrate that for sets of scans of two simple motor tasks—one set acquired with [O15]water using PET, and the other using fMRI—practical N's exist for which “generalization crossover” occurs. This observation supports the application of highly flexible, ANN models to sufficiently large functional activation datasets. |
doi_str_mv | 10.1007/3-540-63046-5_20 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2731616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a1ef494106dc43bf36ebec585afba8bc8087234a3b6d42349ae2880b592b7fc43</originalsourceid><addsrcrecordid>eNotkElPwzAQhc0mUUrvHH3g6jJe4iTcUMUmVXCBs2U7ThRI7cpuKsGvx6Gdy2zvjUYfQjcUlhSgvOOkEEAkByFJoRicoCueJ7KGEuAUzaiklHAu6rPjYlIW52gGHBipS8Ev0SKlL8jBGa8rNkPdW_BD752OeO9iGhM-dpvQuCHh3uN29HbXB68H7N0YQ7_RXe-7e7zOOp8rbMe4dwlr3-DOeRf10P_qyYJtDCmFfPkaXbR6SG5xzHP0-fT4sXoh6_fn19XDmlhWwo5o6lpRCwqysYKblktnnC2qQrdGV8ZWUJWMC82NbEQuau1YVYEpambKNlvm6PZwd6uT1UMbtbd9UtuYv44_ipU8U5JZtjzIUt74zkVlQvhOioKaUCuuMj_1D1BNqPkf629u0Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover</title><source>Springer Books</source><creator>Mørch, Niels ; Hansen, Lars K. ; Strother, Stephen C. ; Svarer, Claus ; Rottenberg, David A. ; Lautrup, Benny ; Savoy, Robert ; Paulson, Olaf B.</creator><contributor>Duncan, James ; Gindi, Gene</contributor><creatorcontrib>Mørch, Niels ; Hansen, Lars K. ; Strother, Stephen C. ; Svarer, Claus ; Rottenberg, David A. ; Lautrup, Benny ; Savoy, Robert ; Paulson, Olaf B. ; Duncan, James ; Gindi, Gene</creatorcontrib><description>We introduce the concept of generalization for models of functional neuroactivation, and show how it is affected by the number, N, of neuroimaging scans available. By plotting generalization as a function of N (i.e. a “learning curve”) we demonstrate that while simple, linear models may generalize better for small N's, more flexible, low-biased nonlinear models, based on artificial neural networks (ANN's), generalize better for larger N's. We demonstrate that for sets of scans of two simple motor tasks—one set acquired with [O15]water using PET, and the other using fMRI—practical N's exist for which “generalization crossover” occurs. This observation supports the application of highly flexible, ANN models to sufficiently large functional activation datasets.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540630465</identifier><identifier>ISBN: 9783540630463</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540690700</identifier><identifier>EISBN: 9783540690702</identifier><identifier>DOI: 10.1007/3-540-63046-5_20</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; generalization ; ill-posed learning ; learning curves ; Medical sciences ; Models and simulation ; Multivariate brain modeling</subject><ispartof>Information Processing in Medical Imaging, 1997, p.259-270</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-a1ef494106dc43bf36ebec585afba8bc8087234a3b6d42349ae2880b592b7fc43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-63046-5_20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-63046-5_20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2731616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Duncan, James</contributor><contributor>Gindi, Gene</contributor><creatorcontrib>Mørch, Niels</creatorcontrib><creatorcontrib>Hansen, Lars K.</creatorcontrib><creatorcontrib>Strother, Stephen C.</creatorcontrib><creatorcontrib>Svarer, Claus</creatorcontrib><creatorcontrib>Rottenberg, David A.</creatorcontrib><creatorcontrib>Lautrup, Benny</creatorcontrib><creatorcontrib>Savoy, Robert</creatorcontrib><creatorcontrib>Paulson, Olaf B.</creatorcontrib><title>Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover</title><title>Information Processing in Medical Imaging</title><description>We introduce the concept of generalization for models of functional neuroactivation, and show how it is affected by the number, N, of neuroimaging scans available. By plotting generalization as a function of N (i.e. a “learning curve”) we demonstrate that while simple, linear models may generalize better for small N's, more flexible, low-biased nonlinear models, based on artificial neural networks (ANN's), generalize better for larger N's. We demonstrate that for sets of scans of two simple motor tasks—one set acquired with [O15]water using PET, and the other using fMRI—practical N's exist for which “generalization crossover” occurs. This observation supports the application of highly flexible, ANN models to sufficiently large functional activation datasets.</description><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>generalization</subject><subject>ill-posed learning</subject><subject>learning curves</subject><subject>Medical sciences</subject><subject>Models and simulation</subject><subject>Multivariate brain modeling</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540630465</isbn><isbn>9783540630463</isbn><isbn>3540690700</isbn><isbn>9783540690702</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkElPwzAQhc0mUUrvHH3g6jJe4iTcUMUmVXCBs2U7ThRI7cpuKsGvx6Gdy2zvjUYfQjcUlhSgvOOkEEAkByFJoRicoCueJ7KGEuAUzaiklHAu6rPjYlIW52gGHBipS8Ev0SKlL8jBGa8rNkPdW_BD752OeO9iGhM-dpvQuCHh3uN29HbXB68H7N0YQ7_RXe-7e7zOOp8rbMe4dwlr3-DOeRf10P_qyYJtDCmFfPkaXbR6SG5xzHP0-fT4sXoh6_fn19XDmlhWwo5o6lpRCwqysYKblktnnC2qQrdGV8ZWUJWMC82NbEQuau1YVYEpambKNlvm6PZwd6uT1UMbtbd9UtuYv44_ipU8U5JZtjzIUt74zkVlQvhOioKaUCuuMj_1D1BNqPkf629u0Q</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Mørch, Niels</creator><creator>Hansen, Lars K.</creator><creator>Strother, Stephen C.</creator><creator>Svarer, Claus</creator><creator>Rottenberg, David A.</creator><creator>Lautrup, Benny</creator><creator>Savoy, Robert</creator><creator>Paulson, Olaf B.</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>19970101</creationdate><title>Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover</title><author>Mørch, Niels ; Hansen, Lars K. ; Strother, Stephen C. ; Svarer, Claus ; Rottenberg, David A. ; Lautrup, Benny ; Savoy, Robert ; Paulson, Olaf B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a1ef494106dc43bf36ebec585afba8bc8087234a3b6d42349ae2880b592b7fc43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>generalization</topic><topic>ill-posed learning</topic><topic>learning curves</topic><topic>Medical sciences</topic><topic>Models and simulation</topic><topic>Multivariate brain modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mørch, Niels</creatorcontrib><creatorcontrib>Hansen, Lars K.</creatorcontrib><creatorcontrib>Strother, Stephen C.</creatorcontrib><creatorcontrib>Svarer, Claus</creatorcontrib><creatorcontrib>Rottenberg, David A.</creatorcontrib><creatorcontrib>Lautrup, Benny</creatorcontrib><creatorcontrib>Savoy, Robert</creatorcontrib><creatorcontrib>Paulson, Olaf B.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mørch, Niels</au><au>Hansen, Lars K.</au><au>Strother, Stephen C.</au><au>Svarer, Claus</au><au>Rottenberg, David A.</au><au>Lautrup, Benny</au><au>Savoy, Robert</au><au>Paulson, Olaf B.</au><au>Duncan, James</au><au>Gindi, Gene</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover</atitle><btitle>Information Processing in Medical Imaging</btitle><date>1997-01-01</date><risdate>1997</risdate><spage>259</spage><epage>270</epage><pages>259-270</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540630465</isbn><isbn>9783540630463</isbn><eisbn>3540690700</eisbn><eisbn>9783540690702</eisbn><abstract>We introduce the concept of generalization for models of functional neuroactivation, and show how it is affected by the number, N, of neuroimaging scans available. By plotting generalization as a function of N (i.e. a “learning curve”) we demonstrate that while simple, linear models may generalize better for small N's, more flexible, low-biased nonlinear models, based on artificial neural networks (ANN's), generalize better for larger N's. We demonstrate that for sets of scans of two simple motor tasks—one set acquired with [O15]water using PET, and the other using fMRI—practical N's exist for which “generalization crossover” occurs. This observation supports the application of highly flexible, ANN models to sufficiently large functional activation datasets.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-63046-5_20</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Information Processing in Medical Imaging, 1997, p.259-270 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_2731616 |
source | Springer Books |
subjects | Biological and medical sciences Computerized, statistical medical data processing and models in biomedicine generalization ill-posed learning learning curves Medical sciences Models and simulation Multivariate brain modeling |
title | Nonlinear versus linear models in functional neuroimaging: Learning curves and generalization crossover |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20versus%20linear%20models%20in%20functional%20neuroimaging:%20Learning%20curves%20and%20generalization%20crossover&rft.btitle=Information%20Processing%20in%20Medical%20Imaging&rft.au=M%C3%B8rch,%20Niels&rft.date=1997-01-01&rft.spage=259&rft.epage=270&rft.pages=259-270&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540630465&rft.isbn_list=9783540630463&rft_id=info:doi/10.1007/3-540-63046-5_20&rft_dat=%3Cpascalfrancis_sprin%3E2731616%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540690700&rft.eisbn_list=9783540690702&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |