Automated 3D segmentation using deformable models and fuzzy affinity

We have developed an algorithm for segmenting objects with closed, non-intersecting boundaries, such as the heart and the lungs, that is independent of the imaging modality used (e.g., MRI, CT, echocardiography). Our method is automatic and requires as initialization a single pixel/voxel within the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jones, Timothy N., Metaxas, Dimitris N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue
container_start_page 113
container_title
container_volume
creator Jones, Timothy N.
Metaxas, Dimitris N.
description We have developed an algorithm for segmenting objects with closed, non-intersecting boundaries, such as the heart and the lungs, that is independent of the imaging modality used (e.g., MRI, CT, echocardiography). Our method is automatic and requires as initialization a single pixel/voxel within the boundaries of the object. Existing segmentation techniques either require much more information during initialization, such as an approximation to the object's boundary, or are not robust to the types of noisy data encountered in the medical domain. By integrating region-based and physics-based modeling techniques we have devised a hybrid design that overcomes these limitations. In our experiments we demonstrate across imaging modalities, that this integration automates and significantly improves the object boundary detection results. This paper focuses on the application of our method to 3D datasets.
doi_str_mv 10.1007/3-540-63046-5_9
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2731605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-14dffe2bd8866737a4b12f35fd7bd033648db5c0d3ca82062c1a65d84dcb563a3</originalsourceid><addsrcrecordid>eNotkDtPwzAUhc1LopTOrB5YDde-fiRj1fKSKrHAbDmxXQXyqOJkaH89Ke1djnTPpzN8hDxweOIA5hmZksA0gtRM2fyC3OH00DkYgEsy45pzhijzq3NxBNU1mQGCYLmReEsWKf3AdCgwz8SMrJfj0DVuCJ7imqawbUI7uKHqWjqmqt1SH2LXN66oA206H-pEXetpHA-HPXUxVm017O_JTXR1Cotzzsn368vX6p1tPt8-VssNK4XOBsaljzGIwmeZ1gaNkwUXEVX0pvCAqGXmC1WCx9JlArQoudPKZ9KXhdLocE4eT7s7l0pXx961ZZXsrq8a1--tMMg1qAljJyxNTbsNvS267jdZDvao0aKd5Nh_O3bSiH_QVGBc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated 3D segmentation using deformable models and fuzzy affinity</title><source>Springer Books</source><creator>Jones, Timothy N. ; Metaxas, Dimitris N.</creator><contributor>Duncan, James ; Gindi, Gene</contributor><creatorcontrib>Jones, Timothy N. ; Metaxas, Dimitris N. ; Duncan, James ; Gindi, Gene</creatorcontrib><description>We have developed an algorithm for segmenting objects with closed, non-intersecting boundaries, such as the heart and the lungs, that is independent of the imaging modality used (e.g., MRI, CT, echocardiography). Our method is automatic and requires as initialization a single pixel/voxel within the boundaries of the object. Existing segmentation techniques either require much more information during initialization, such as an approximation to the object's boundary, or are not robust to the types of noisy data encountered in the medical domain. By integrating region-based and physics-based modeling techniques we have devised a hybrid design that overcomes these limitations. In our experiments we demonstrate across imaging modalities, that this integration automates and significantly improves the object boundary detection results. This paper focuses on the application of our method to 3D datasets.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540630465</identifier><identifier>ISBN: 9783540630463</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540690700</identifier><identifier>EISBN: 9783540690702</identifier><identifier>DOI: 10.1007/3-540-63046-5_9</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active Contour Model ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Deformable Model ; Fuzzy Connectedness ; Medical computing and teaching ; Medical sciences ; Model Node ; Object Boundary</subject><ispartof>Information Processing in Medical Imaging, 1997, p.113-126</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-14dffe2bd8866737a4b12f35fd7bd033648db5c0d3ca82062c1a65d84dcb563a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-63046-5_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-63046-5_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2731605$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Duncan, James</contributor><contributor>Gindi, Gene</contributor><creatorcontrib>Jones, Timothy N.</creatorcontrib><creatorcontrib>Metaxas, Dimitris N.</creatorcontrib><title>Automated 3D segmentation using deformable models and fuzzy affinity</title><title>Information Processing in Medical Imaging</title><description>We have developed an algorithm for segmenting objects with closed, non-intersecting boundaries, such as the heart and the lungs, that is independent of the imaging modality used (e.g., MRI, CT, echocardiography). Our method is automatic and requires as initialization a single pixel/voxel within the boundaries of the object. Existing segmentation techniques either require much more information during initialization, such as an approximation to the object's boundary, or are not robust to the types of noisy data encountered in the medical domain. By integrating region-based and physics-based modeling techniques we have devised a hybrid design that overcomes these limitations. In our experiments we demonstrate across imaging modalities, that this integration automates and significantly improves the object boundary detection results. This paper focuses on the application of our method to 3D datasets.</description><subject>Active Contour Model</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Deformable Model</subject><subject>Fuzzy Connectedness</subject><subject>Medical computing and teaching</subject><subject>Medical sciences</subject><subject>Model Node</subject><subject>Object Boundary</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540630465</isbn><isbn>9783540630463</isbn><isbn>3540690700</isbn><isbn>9783540690702</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkDtPwzAUhc1LopTOrB5YDde-fiRj1fKSKrHAbDmxXQXyqOJkaH89Ke1djnTPpzN8hDxweOIA5hmZksA0gtRM2fyC3OH00DkYgEsy45pzhijzq3NxBNU1mQGCYLmReEsWKf3AdCgwz8SMrJfj0DVuCJ7imqawbUI7uKHqWjqmqt1SH2LXN66oA206H-pEXetpHA-HPXUxVm017O_JTXR1Cotzzsn368vX6p1tPt8-VssNK4XOBsaljzGIwmeZ1gaNkwUXEVX0pvCAqGXmC1WCx9JlArQoudPKZ9KXhdLocE4eT7s7l0pXx961ZZXsrq8a1--tMMg1qAljJyxNTbsNvS267jdZDvao0aKd5Nh_O3bSiH_QVGBc</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Jones, Timothy N.</creator><creator>Metaxas, Dimitris N.</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>19970101</creationdate><title>Automated 3D segmentation using deformable models and fuzzy affinity</title><author>Jones, Timothy N. ; Metaxas, Dimitris N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-14dffe2bd8866737a4b12f35fd7bd033648db5c0d3ca82062c1a65d84dcb563a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Active Contour Model</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Deformable Model</topic><topic>Fuzzy Connectedness</topic><topic>Medical computing and teaching</topic><topic>Medical sciences</topic><topic>Model Node</topic><topic>Object Boundary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Timothy N.</creatorcontrib><creatorcontrib>Metaxas, Dimitris N.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Timothy N.</au><au>Metaxas, Dimitris N.</au><au>Duncan, James</au><au>Gindi, Gene</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated 3D segmentation using deformable models and fuzzy affinity</atitle><btitle>Information Processing in Medical Imaging</btitle><date>1997-01-01</date><risdate>1997</risdate><spage>113</spage><epage>126</epage><pages>113-126</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540630465</isbn><isbn>9783540630463</isbn><eisbn>3540690700</eisbn><eisbn>9783540690702</eisbn><abstract>We have developed an algorithm for segmenting objects with closed, non-intersecting boundaries, such as the heart and the lungs, that is independent of the imaging modality used (e.g., MRI, CT, echocardiography). Our method is automatic and requires as initialization a single pixel/voxel within the boundaries of the object. Existing segmentation techniques either require much more information during initialization, such as an approximation to the object's boundary, or are not robust to the types of noisy data encountered in the medical domain. By integrating region-based and physics-based modeling techniques we have devised a hybrid design that overcomes these limitations. In our experiments we demonstrate across imaging modalities, that this integration automates and significantly improves the object boundary detection results. This paper focuses on the application of our method to 3D datasets.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-63046-5_9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Information Processing in Medical Imaging, 1997, p.113-126
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2731605
source Springer Books
subjects Active Contour Model
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Deformable Model
Fuzzy Connectedness
Medical computing and teaching
Medical sciences
Model Node
Object Boundary
title Automated 3D segmentation using deformable models and fuzzy affinity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%203D%20segmentation%20using%20deformable%20models%20and%20fuzzy%20affinity&rft.btitle=Information%20Processing%20in%20Medical%20Imaging&rft.au=Jones,%20Timothy%20N.&rft.date=1997-01-01&rft.spage=113&rft.epage=126&rft.pages=113-126&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540630465&rft.isbn_list=9783540630463&rft_id=info:doi/10.1007/3-540-63046-5_9&rft_dat=%3Cpascalfrancis_sprin%3E2731605%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540690700&rft.eisbn_list=9783540690702&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true