Automated 3D segmentation using deformable models and fuzzy affinity
We have developed an algorithm for segmenting objects with closed, non-intersecting boundaries, such as the heart and the lungs, that is independent of the imaging modality used (e.g., MRI, CT, echocardiography). Our method is automatic and requires as initialization a single pixel/voxel within the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | |
container_start_page | 113 |
container_title | |
container_volume | |
creator | Jones, Timothy N. Metaxas, Dimitris N. |
description | We have developed an algorithm for segmenting objects with closed, non-intersecting boundaries, such as the heart and the lungs, that is independent of the imaging modality used (e.g., MRI, CT, echocardiography). Our method is automatic and requires as initialization a single pixel/voxel within the boundaries of the object. Existing segmentation techniques either require much more information during initialization, such as an approximation to the object's boundary, or are not robust to the types of noisy data encountered in the medical domain. By integrating region-based and physics-based modeling techniques we have devised a hybrid design that overcomes these limitations. In our experiments we demonstrate across imaging modalities, that this integration automates and significantly improves the object boundary detection results. This paper focuses on the application of our method to 3D datasets. |
doi_str_mv | 10.1007/3-540-63046-5_9 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2731605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-14dffe2bd8866737a4b12f35fd7bd033648db5c0d3ca82062c1a65d84dcb563a3</originalsourceid><addsrcrecordid>eNotkDtPwzAUhc1LopTOrB5YDde-fiRj1fKSKrHAbDmxXQXyqOJkaH89Ke1djnTPpzN8hDxweOIA5hmZksA0gtRM2fyC3OH00DkYgEsy45pzhijzq3NxBNU1mQGCYLmReEsWKf3AdCgwz8SMrJfj0DVuCJ7imqawbUI7uKHqWjqmqt1SH2LXN66oA206H-pEXetpHA-HPXUxVm017O_JTXR1Cotzzsn368vX6p1tPt8-VssNK4XOBsaljzGIwmeZ1gaNkwUXEVX0pvCAqGXmC1WCx9JlArQoudPKZ9KXhdLocE4eT7s7l0pXx961ZZXsrq8a1--tMMg1qAljJyxNTbsNvS267jdZDvao0aKd5Nh_O3bSiH_QVGBc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated 3D segmentation using deformable models and fuzzy affinity</title><source>Springer Books</source><creator>Jones, Timothy N. ; Metaxas, Dimitris N.</creator><contributor>Duncan, James ; Gindi, Gene</contributor><creatorcontrib>Jones, Timothy N. ; Metaxas, Dimitris N. ; Duncan, James ; Gindi, Gene</creatorcontrib><description>We have developed an algorithm for segmenting objects with closed, non-intersecting boundaries, such as the heart and the lungs, that is independent of the imaging modality used (e.g., MRI, CT, echocardiography). Our method is automatic and requires as initialization a single pixel/voxel within the boundaries of the object. Existing segmentation techniques either require much more information during initialization, such as an approximation to the object's boundary, or are not robust to the types of noisy data encountered in the medical domain. By integrating region-based and physics-based modeling techniques we have devised a hybrid design that overcomes these limitations. In our experiments we demonstrate across imaging modalities, that this integration automates and significantly improves the object boundary detection results. This paper focuses on the application of our method to 3D datasets.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540630465</identifier><identifier>ISBN: 9783540630463</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540690700</identifier><identifier>EISBN: 9783540690702</identifier><identifier>DOI: 10.1007/3-540-63046-5_9</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active Contour Model ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Deformable Model ; Fuzzy Connectedness ; Medical computing and teaching ; Medical sciences ; Model Node ; Object Boundary</subject><ispartof>Information Processing in Medical Imaging, 1997, p.113-126</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-14dffe2bd8866737a4b12f35fd7bd033648db5c0d3ca82062c1a65d84dcb563a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-63046-5_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-63046-5_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2731605$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Duncan, James</contributor><contributor>Gindi, Gene</contributor><creatorcontrib>Jones, Timothy N.</creatorcontrib><creatorcontrib>Metaxas, Dimitris N.</creatorcontrib><title>Automated 3D segmentation using deformable models and fuzzy affinity</title><title>Information Processing in Medical Imaging</title><description>We have developed an algorithm for segmenting objects with closed, non-intersecting boundaries, such as the heart and the lungs, that is independent of the imaging modality used (e.g., MRI, CT, echocardiography). Our method is automatic and requires as initialization a single pixel/voxel within the boundaries of the object. Existing segmentation techniques either require much more information during initialization, such as an approximation to the object's boundary, or are not robust to the types of noisy data encountered in the medical domain. By integrating region-based and physics-based modeling techniques we have devised a hybrid design that overcomes these limitations. In our experiments we demonstrate across imaging modalities, that this integration automates and significantly improves the object boundary detection results. This paper focuses on the application of our method to 3D datasets.</description><subject>Active Contour Model</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Deformable Model</subject><subject>Fuzzy Connectedness</subject><subject>Medical computing and teaching</subject><subject>Medical sciences</subject><subject>Model Node</subject><subject>Object Boundary</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540630465</isbn><isbn>9783540630463</isbn><isbn>3540690700</isbn><isbn>9783540690702</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkDtPwzAUhc1LopTOrB5YDde-fiRj1fKSKrHAbDmxXQXyqOJkaH89Ke1djnTPpzN8hDxweOIA5hmZksA0gtRM2fyC3OH00DkYgEsy45pzhijzq3NxBNU1mQGCYLmReEsWKf3AdCgwz8SMrJfj0DVuCJ7imqawbUI7uKHqWjqmqt1SH2LXN66oA206H-pEXetpHA-HPXUxVm017O_JTXR1Cotzzsn368vX6p1tPt8-VssNK4XOBsaljzGIwmeZ1gaNkwUXEVX0pvCAqGXmC1WCx9JlArQoudPKZ9KXhdLocE4eT7s7l0pXx961ZZXsrq8a1--tMMg1qAljJyxNTbsNvS267jdZDvao0aKd5Nh_O3bSiH_QVGBc</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Jones, Timothy N.</creator><creator>Metaxas, Dimitris N.</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>19970101</creationdate><title>Automated 3D segmentation using deformable models and fuzzy affinity</title><author>Jones, Timothy N. ; Metaxas, Dimitris N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-14dffe2bd8866737a4b12f35fd7bd033648db5c0d3ca82062c1a65d84dcb563a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Active Contour Model</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Deformable Model</topic><topic>Fuzzy Connectedness</topic><topic>Medical computing and teaching</topic><topic>Medical sciences</topic><topic>Model Node</topic><topic>Object Boundary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Timothy N.</creatorcontrib><creatorcontrib>Metaxas, Dimitris N.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Timothy N.</au><au>Metaxas, Dimitris N.</au><au>Duncan, James</au><au>Gindi, Gene</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated 3D segmentation using deformable models and fuzzy affinity</atitle><btitle>Information Processing in Medical Imaging</btitle><date>1997-01-01</date><risdate>1997</risdate><spage>113</spage><epage>126</epage><pages>113-126</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540630465</isbn><isbn>9783540630463</isbn><eisbn>3540690700</eisbn><eisbn>9783540690702</eisbn><abstract>We have developed an algorithm for segmenting objects with closed, non-intersecting boundaries, such as the heart and the lungs, that is independent of the imaging modality used (e.g., MRI, CT, echocardiography). Our method is automatic and requires as initialization a single pixel/voxel within the boundaries of the object. Existing segmentation techniques either require much more information during initialization, such as an approximation to the object's boundary, or are not robust to the types of noisy data encountered in the medical domain. By integrating region-based and physics-based modeling techniques we have devised a hybrid design that overcomes these limitations. In our experiments we demonstrate across imaging modalities, that this integration automates and significantly improves the object boundary detection results. This paper focuses on the application of our method to 3D datasets.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-63046-5_9</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Information Processing in Medical Imaging, 1997, p.113-126 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_2731605 |
source | Springer Books |
subjects | Active Contour Model Biological and medical sciences Computerized, statistical medical data processing and models in biomedicine Deformable Model Fuzzy Connectedness Medical computing and teaching Medical sciences Model Node Object Boundary |
title | Automated 3D segmentation using deformable models and fuzzy affinity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%203D%20segmentation%20using%20deformable%20models%20and%20fuzzy%20affinity&rft.btitle=Information%20Processing%20in%20Medical%20Imaging&rft.au=Jones,%20Timothy%20N.&rft.date=1997-01-01&rft.spage=113&rft.epage=126&rft.pages=113-126&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540630465&rft.isbn_list=9783540630463&rft_id=info:doi/10.1007/3-540-63046-5_9&rft_dat=%3Cpascalfrancis_sprin%3E2731605%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540690700&rft.eisbn_list=9783540690702&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |