On the Convergence of the Vector-Fitting Algorithm

Vector fitting (VF), first published by Gustavesen and Semlyen in 1999, is widely used for constructing rational models from measured or full-wave electromagnetic simulated frequency-domain responses ( S -, Y -, or Z -parameters). As pointed out by Grivet-Talocia and Bandinu in 2006, to date there i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2013-04, Vol.61 (4), p.1435-1443
Hauptverfasser: Lefteriu, S., Antoulas, A. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1443
container_issue 4
container_start_page 1435
container_title IEEE transactions on microwave theory and techniques
container_volume 61
creator Lefteriu, S.
Antoulas, A. C.
description Vector fitting (VF), first published by Gustavesen and Semlyen in 1999, is widely used for constructing rational models from measured or full-wave electromagnetic simulated frequency-domain responses ( S -, Y -, or Z -parameters). As pointed out by Grivet-Talocia and Bandinu in 2006, to date there is no convergence analysis of the pole relocation iteration in VF. The goal of this paper is to elucidate this issue. It will be shown that the iteration seeks the roots of a set of coupled multivariate rational equations. For noise-free measurements, it is shown that there is no iteration involved, assuming that the number of starting poles is chosen greater or equal to the order of the underlying system. For noisy data, the VF iteration may not find any solution due to the fact that all stationary points of the fixed point iteration are repelling. Therefore, in case the iteration does not converge, we propose to incorporate the Newton step in the VF iteration, thus guaranteeing local convergence. Lastly, we provide a short review of variable projection as an alternative to VF.
doi_str_mv 10.1109/TMTT.2013.2246526
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27251836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6470726</ieee_id><sourcerecordid>27251836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-37bb4aca5cc393c3b84e882ed9efa89fb0477c2aa36ce41c9669d294d1ff1bca3</originalsourceid><addsrcrecordid>eNo9j01Lw0AQhhdRMFZ_gHjJxWPqfn8cS7FVqPQSvYbNdDaNtEnZDYL_3saWnoaZeZ8XHkIeGZ0yRt1L-VGWU06ZmHIuteL6imRMKVM4beg1yShltnDS0ltyl9L3cZWK2ozwdZcPW8znffeDscEOMO_D_-kLYehjsWiHoe2afLZr-tgO2_09uQl-l_DhPCfkc_Fazt-K1Xr5Pp-tCuBODYUwdS09eAUgnABRW4nWctw4DN66UFNpDHDvhQaUDJzWbsOd3LAQWA1eTAg79ULsU4oYqkNs9z7-VoxWo3Q1SlejdHWWPjLPJ-bgE_hdiL6DNl1AbrhiVoy5p1OuRcTLW0tDzbHlDyRRYC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Convergence of the Vector-Fitting Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Lefteriu, S. ; Antoulas, A. C.</creator><creatorcontrib>Lefteriu, S. ; Antoulas, A. C.</creatorcontrib><description>Vector fitting (VF), first published by Gustavesen and Semlyen in 1999, is widely used for constructing rational models from measured or full-wave electromagnetic simulated frequency-domain responses ( S -, Y -, or Z -parameters). As pointed out by Grivet-Talocia and Bandinu in 2006, to date there is no convergence analysis of the pole relocation iteration in VF. The goal of this paper is to elucidate this issue. It will be shown that the iteration seeks the roots of a set of coupled multivariate rational equations. For noise-free measurements, it is shown that there is no iteration involved, assuming that the number of starting poles is chosen greater or equal to the order of the underlying system. For noisy data, the VF iteration may not find any solution due to the fact that all stationary points of the fixed point iteration are repelling. Therefore, in case the iteration does not converge, we propose to incorporate the Newton step in the VF iteration, thus guaranteeing local convergence. Lastly, we provide a short review of variable projection as an alternative to VF.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2013.2246526</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Convergence ; Convergence analysis ; Exact sciences and technology ; Frequency measurement ; iterative algorithm ; Linear systems ; Mathematical model ; Modelling and identification ; Noise measurement ; Polynomials ; Sanathanan-Koerner (SK) iteration ; Steiglitz-McBride (StMcB) method ; variable projection (VARPRO) algorithm ; vector fitting (VF)</subject><ispartof>IEEE transactions on microwave theory and techniques, 2013-04, Vol.61 (4), p.1435-1443</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-37bb4aca5cc393c3b84e882ed9efa89fb0477c2aa36ce41c9669d294d1ff1bca3</citedby><cites>FETCH-LOGICAL-c295t-37bb4aca5cc393c3b84e882ed9efa89fb0477c2aa36ce41c9669d294d1ff1bca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6470726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6470726$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27251836$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefteriu, S.</creatorcontrib><creatorcontrib>Antoulas, A. C.</creatorcontrib><title>On the Convergence of the Vector-Fitting Algorithm</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Vector fitting (VF), first published by Gustavesen and Semlyen in 1999, is widely used for constructing rational models from measured or full-wave electromagnetic simulated frequency-domain responses ( S -, Y -, or Z -parameters). As pointed out by Grivet-Talocia and Bandinu in 2006, to date there is no convergence analysis of the pole relocation iteration in VF. The goal of this paper is to elucidate this issue. It will be shown that the iteration seeks the roots of a set of coupled multivariate rational equations. For noise-free measurements, it is shown that there is no iteration involved, assuming that the number of starting poles is chosen greater or equal to the order of the underlying system. For noisy data, the VF iteration may not find any solution due to the fact that all stationary points of the fixed point iteration are repelling. Therefore, in case the iteration does not converge, we propose to incorporate the Newton step in the VF iteration, thus guaranteeing local convergence. Lastly, we provide a short review of variable projection as an alternative to VF.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Convergence analysis</subject><subject>Exact sciences and technology</subject><subject>Frequency measurement</subject><subject>iterative algorithm</subject><subject>Linear systems</subject><subject>Mathematical model</subject><subject>Modelling and identification</subject><subject>Noise measurement</subject><subject>Polynomials</subject><subject>Sanathanan-Koerner (SK) iteration</subject><subject>Steiglitz-McBride (StMcB) method</subject><subject>variable projection (VARPRO) algorithm</subject><subject>vector fitting (VF)</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j01Lw0AQhhdRMFZ_gHjJxWPqfn8cS7FVqPQSvYbNdDaNtEnZDYL_3saWnoaZeZ8XHkIeGZ0yRt1L-VGWU06ZmHIuteL6imRMKVM4beg1yShltnDS0ltyl9L3cZWK2ozwdZcPW8znffeDscEOMO_D_-kLYehjsWiHoe2afLZr-tgO2_09uQl-l_DhPCfkc_Fazt-K1Xr5Pp-tCuBODYUwdS09eAUgnABRW4nWctw4DN66UFNpDHDvhQaUDJzWbsOd3LAQWA1eTAg79ULsU4oYqkNs9z7-VoxWo3Q1SlejdHWWPjLPJ-bgE_hdiL6DNl1AbrhiVoy5p1OuRcTLW0tDzbHlDyRRYC8</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Lefteriu, S.</creator><creator>Antoulas, A. C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>On the Convergence of the Vector-Fitting Algorithm</title><author>Lefteriu, S. ; Antoulas, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-37bb4aca5cc393c3b84e882ed9efa89fb0477c2aa36ce41c9669d294d1ff1bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Convergence analysis</topic><topic>Exact sciences and technology</topic><topic>Frequency measurement</topic><topic>iterative algorithm</topic><topic>Linear systems</topic><topic>Mathematical model</topic><topic>Modelling and identification</topic><topic>Noise measurement</topic><topic>Polynomials</topic><topic>Sanathanan-Koerner (SK) iteration</topic><topic>Steiglitz-McBride (StMcB) method</topic><topic>variable projection (VARPRO) algorithm</topic><topic>vector fitting (VF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefteriu, S.</creatorcontrib><creatorcontrib>Antoulas, A. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lefteriu, S.</au><au>Antoulas, A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Convergence of the Vector-Fitting Algorithm</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>61</volume><issue>4</issue><spage>1435</spage><epage>1443</epage><pages>1435-1443</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Vector fitting (VF), first published by Gustavesen and Semlyen in 1999, is widely used for constructing rational models from measured or full-wave electromagnetic simulated frequency-domain responses ( S -, Y -, or Z -parameters). As pointed out by Grivet-Talocia and Bandinu in 2006, to date there is no convergence analysis of the pole relocation iteration in VF. The goal of this paper is to elucidate this issue. It will be shown that the iteration seeks the roots of a set of coupled multivariate rational equations. For noise-free measurements, it is shown that there is no iteration involved, assuming that the number of starting poles is chosen greater or equal to the order of the underlying system. For noisy data, the VF iteration may not find any solution due to the fact that all stationary points of the fixed point iteration are repelling. Therefore, in case the iteration does not converge, we propose to incorporate the Newton step in the VF iteration, thus guaranteeing local convergence. Lastly, we provide a short review of variable projection as an alternative to VF.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2013.2246526</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2013-04, Vol.61 (4), p.1435-1443
issn 0018-9480
1557-9670
language eng
recordid cdi_pascalfrancis_primary_27251836
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
Convergence
Convergence analysis
Exact sciences and technology
Frequency measurement
iterative algorithm
Linear systems
Mathematical model
Modelling and identification
Noise measurement
Polynomials
Sanathanan-Koerner (SK) iteration
Steiglitz-McBride (StMcB) method
variable projection (VARPRO) algorithm
vector fitting (VF)
title On the Convergence of the Vector-Fitting Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Convergence%20of%20the%20Vector-Fitting%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Lefteriu,%20S.&rft.date=2013-04-01&rft.volume=61&rft.issue=4&rft.spage=1435&rft.epage=1443&rft.pages=1435-1443&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2013.2246526&rft_dat=%3Cpascalfrancis_RIE%3E27251836%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6470726&rfr_iscdi=true