Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory
We report the role of tunnel oxide (TO) top nitridation (TN) in the reliability of nanoscale Flash memory and provide comprehensive understanding for the mechanism. TN was expected to potentially improve the TO quality by protecting against damages from edge encroachment and other processes. However...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2013-03, Vol.34 (3), p.396-398 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 398 |
---|---|
container_issue | 3 |
container_start_page | 396 |
container_title | IEEE electron device letters |
container_volume | 34 |
creator | Taehoon Kim Sarpatwari, K. Koka, S. Hongmei Wang |
description | We report the role of tunnel oxide (TO) top nitridation (TN) in the reliability of nanoscale Flash memory and provide comprehensive understanding for the mechanism. TN was expected to potentially improve the TO quality by protecting against damages from edge encroachment and other processes. However, instead of net improvement, we found a tradeoff between endurance (charge trap) and retention (charge detrap and leakage) in the reliability of the cell array. We find that more charges are trapped in the TO with increasing nitrogen concentration, although detrapping can be decreased in a limited concentration. This suggests that the defect in the TN layer (SiON) includes a deep energy trap, thus resulting in a more strongly bound charge. Increasing nitrogen concentration also degrades charge retention from TO leakage but can be better for the same electrical oxide thickness. Evaluating a band diagram suggests that the possible improvement arises from the greater physical oxide thickness, although the barrier height for electron transmission is lower. This suggests that TO leakage is dominated by an inelastic trap-assisted tunneling mode using multiple direct tunneling through deep oxide traps. The results are indicative of the intrinsic impact of TN, regardless of bulk nitrogen or hydrogen incorporation. |
doi_str_mv | 10.1109/LED.2013.2237881 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27130145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6419756</ieee_id><sourcerecordid>27130145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6e680aeb607567041d317614af4ca243ed38104f23c95399661e89aaf0569143</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwI7F4YUzxxY6TjKi0gFRaCYU5cpMLNUrtyE4R_fc4StXphvvep7tHyD2wGQDLn1aLl1nMgM_imKdZBhdkAkmSRSyR_JJMWCog4sDkNbnx_ocxECIVE3KY233ncIfG61-kX6ZG53tlam2-qTW03yH9tC1S29DiYAy2dPOna6SF7eha907Xqtch2Fg3hrHVaqtb3R8HZq2M9ZUKBctW-R39wL11x1ty1ajW491pTkmxXBTzt2i1eX2fP6-iiid5H0mUGVO4lSxNZMoE1BxSCUI1olKx4FjzDJhoYl7lCc9zKQGzXKkmPJ2D4FPCxtrKWe8dNmXn9F65YwmsHKyVwVo5WCtP1gLyOCKdGs5unDKV9mcuToEHdUnIPYw5jYjntRSQh1P5P6SpdaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Taehoon Kim ; Sarpatwari, K. ; Koka, S. ; Hongmei Wang</creator><creatorcontrib>Taehoon Kim ; Sarpatwari, K. ; Koka, S. ; Hongmei Wang</creatorcontrib><description>We report the role of tunnel oxide (TO) top nitridation (TN) in the reliability of nanoscale Flash memory and provide comprehensive understanding for the mechanism. TN was expected to potentially improve the TO quality by protecting against damages from edge encroachment and other processes. However, instead of net improvement, we found a tradeoff between endurance (charge trap) and retention (charge detrap and leakage) in the reliability of the cell array. We find that more charges are trapped in the TO with increasing nitrogen concentration, although detrapping can be decreased in a limited concentration. This suggests that the defect in the TN layer (SiON) includes a deep energy trap, thus resulting in a more strongly bound charge. Increasing nitrogen concentration also degrades charge retention from TO leakage but can be better for the same electrical oxide thickness. Evaluating a band diagram suggests that the possible improvement arises from the greater physical oxide thickness, although the barrier height for electron transmission is lower. This suggests that TO leakage is dominated by an inelastic trap-assisted tunneling mode using multiple direct tunneling through deep oxide traps. The results are indicative of the intrinsic impact of TN, regardless of bulk nitrogen or hydrogen incorporation.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2013.2237881</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Charge trap ; Design. Technologies. Operation analysis. Testing ; Electron traps ; Electronics ; endurance ; Exact sciences and technology ; Flash memory ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Magnetic and optical mass memories ; Molecular electronics, nanoelectronics ; Nanoscale devices ; Nitrogen ; plasma nitridation ; Reliability ; retention ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; silicon oxynitride (SiON) ; Storage and reproduction of information ; top nitridation (TN) ; trap-assisted tunneling (TAT) ; Tunneling</subject><ispartof>IEEE electron device letters, 2013-03, Vol.34 (3), p.396-398</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-6e680aeb607567041d317614af4ca243ed38104f23c95399661e89aaf0569143</citedby><cites>FETCH-LOGICAL-c359t-6e680aeb607567041d317614af4ca243ed38104f23c95399661e89aaf0569143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6419756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6419756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27130145$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Taehoon Kim</creatorcontrib><creatorcontrib>Sarpatwari, K.</creatorcontrib><creatorcontrib>Koka, S.</creatorcontrib><creatorcontrib>Hongmei Wang</creatorcontrib><title>Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>We report the role of tunnel oxide (TO) top nitridation (TN) in the reliability of nanoscale Flash memory and provide comprehensive understanding for the mechanism. TN was expected to potentially improve the TO quality by protecting against damages from edge encroachment and other processes. However, instead of net improvement, we found a tradeoff between endurance (charge trap) and retention (charge detrap and leakage) in the reliability of the cell array. We find that more charges are trapped in the TO with increasing nitrogen concentration, although detrapping can be decreased in a limited concentration. This suggests that the defect in the TN layer (SiON) includes a deep energy trap, thus resulting in a more strongly bound charge. Increasing nitrogen concentration also degrades charge retention from TO leakage but can be better for the same electrical oxide thickness. Evaluating a band diagram suggests that the possible improvement arises from the greater physical oxide thickness, although the barrier height for electron transmission is lower. This suggests that TO leakage is dominated by an inelastic trap-assisted tunneling mode using multiple direct tunneling through deep oxide traps. The results are indicative of the intrinsic impact of TN, regardless of bulk nitrogen or hydrogen incorporation.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Charge trap</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electron traps</subject><subject>Electronics</subject><subject>endurance</subject><subject>Exact sciences and technology</subject><subject>Flash memory</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Magnetic and optical mass memories</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanoscale devices</subject><subject>Nitrogen</subject><subject>plasma nitridation</subject><subject>Reliability</subject><subject>retention</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>silicon oxynitride (SiON)</subject><subject>Storage and reproduction of information</subject><subject>top nitridation (TN)</subject><subject>trap-assisted tunneling (TAT)</subject><subject>Tunneling</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQRi0EEqWwI7F4YUzxxY6TjKi0gFRaCYU5cpMLNUrtyE4R_fc4StXphvvep7tHyD2wGQDLn1aLl1nMgM_imKdZBhdkAkmSRSyR_JJMWCog4sDkNbnx_ocxECIVE3KY233ncIfG61-kX6ZG53tlam2-qTW03yH9tC1S29DiYAy2dPOna6SF7eha907Xqtch2Fg3hrHVaqtb3R8HZq2M9ZUKBctW-R39wL11x1ty1ajW491pTkmxXBTzt2i1eX2fP6-iiid5H0mUGVO4lSxNZMoE1BxSCUI1olKx4FjzDJhoYl7lCc9zKQGzXKkmPJ2D4FPCxtrKWe8dNmXn9F65YwmsHKyVwVo5WCtP1gLyOCKdGs5unDKV9mcuToEHdUnIPYw5jYjntRSQh1P5P6SpdaI</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Taehoon Kim</creator><creator>Sarpatwari, K.</creator><creator>Koka, S.</creator><creator>Hongmei Wang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130301</creationdate><title>Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory</title><author>Taehoon Kim ; Sarpatwari, K. ; Koka, S. ; Hongmei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6e680aeb607567041d317614af4ca243ed38104f23c95399661e89aaf0569143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Charge trap</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electron traps</topic><topic>Electronics</topic><topic>endurance</topic><topic>Exact sciences and technology</topic><topic>Flash memory</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Magnetic and optical mass memories</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanoscale devices</topic><topic>Nitrogen</topic><topic>plasma nitridation</topic><topic>Reliability</topic><topic>retention</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>silicon oxynitride (SiON)</topic><topic>Storage and reproduction of information</topic><topic>top nitridation (TN)</topic><topic>trap-assisted tunneling (TAT)</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taehoon Kim</creatorcontrib><creatorcontrib>Sarpatwari, K.</creatorcontrib><creatorcontrib>Koka, S.</creatorcontrib><creatorcontrib>Hongmei Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taehoon Kim</au><au>Sarpatwari, K.</au><au>Koka, S.</au><au>Hongmei Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>34</volume><issue>3</issue><spage>396</spage><epage>398</epage><pages>396-398</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>We report the role of tunnel oxide (TO) top nitridation (TN) in the reliability of nanoscale Flash memory and provide comprehensive understanding for the mechanism. TN was expected to potentially improve the TO quality by protecting against damages from edge encroachment and other processes. However, instead of net improvement, we found a tradeoff between endurance (charge trap) and retention (charge detrap and leakage) in the reliability of the cell array. We find that more charges are trapped in the TO with increasing nitrogen concentration, although detrapping can be decreased in a limited concentration. This suggests that the defect in the TN layer (SiON) includes a deep energy trap, thus resulting in a more strongly bound charge. Increasing nitrogen concentration also degrades charge retention from TO leakage but can be better for the same electrical oxide thickness. Evaluating a band diagram suggests that the possible improvement arises from the greater physical oxide thickness, although the barrier height for electron transmission is lower. This suggests that TO leakage is dominated by an inelastic trap-assisted tunneling mode using multiple direct tunneling through deep oxide traps. The results are indicative of the intrinsic impact of TN, regardless of bulk nitrogen or hydrogen incorporation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2013.2237881</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2013-03, Vol.34 (3), p.396-398 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_pascalfrancis_primary_27130145 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Arrays Charge trap Design. Technologies. Operation analysis. Testing Electron traps Electronics endurance Exact sciences and technology Flash memory Integrated circuits Integrated circuits by function (including memories and processors) Magnetic and optical mass memories Molecular electronics, nanoelectronics Nanoscale devices Nitrogen plasma nitridation Reliability retention Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices silicon oxynitride (SiON) Storage and reproduction of information top nitridation (TN) trap-assisted tunneling (TAT) Tunneling |
title | Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Understanding%20on%20the%20Role%20of%20Tunnel%20Oxide%20Top%20Nitridation%20for%20the%20Reliability%20of%20Nanoscale%20Flash%20Memory&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Taehoon%20Kim&rft.date=2013-03-01&rft.volume=34&rft.issue=3&rft.spage=396&rft.epage=398&rft.pages=396-398&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2013.2237881&rft_dat=%3Cpascalfrancis_RIE%3E27130145%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6419756&rfr_iscdi=true |