Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory

We report the role of tunnel oxide (TO) top nitridation (TN) in the reliability of nanoscale Flash memory and provide comprehensive understanding for the mechanism. TN was expected to potentially improve the TO quality by protecting against damages from edge encroachment and other processes. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2013-03, Vol.34 (3), p.396-398
Hauptverfasser: Taehoon Kim, Sarpatwari, K., Koka, S., Hongmei Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 398
container_issue 3
container_start_page 396
container_title IEEE electron device letters
container_volume 34
creator Taehoon Kim
Sarpatwari, K.
Koka, S.
Hongmei Wang
description We report the role of tunnel oxide (TO) top nitridation (TN) in the reliability of nanoscale Flash memory and provide comprehensive understanding for the mechanism. TN was expected to potentially improve the TO quality by protecting against damages from edge encroachment and other processes. However, instead of net improvement, we found a tradeoff between endurance (charge trap) and retention (charge detrap and leakage) in the reliability of the cell array. We find that more charges are trapped in the TO with increasing nitrogen concentration, although detrapping can be decreased in a limited concentration. This suggests that the defect in the TN layer (SiON) includes a deep energy trap, thus resulting in a more strongly bound charge. Increasing nitrogen concentration also degrades charge retention from TO leakage but can be better for the same electrical oxide thickness. Evaluating a band diagram suggests that the possible improvement arises from the greater physical oxide thickness, although the barrier height for electron transmission is lower. This suggests that TO leakage is dominated by an inelastic trap-assisted tunneling mode using multiple direct tunneling through deep oxide traps. The results are indicative of the intrinsic impact of TN, regardless of bulk nitrogen or hydrogen incorporation.
doi_str_mv 10.1109/LED.2013.2237881
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27130145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6419756</ieee_id><sourcerecordid>27130145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6e680aeb607567041d317614af4ca243ed38104f23c95399661e89aaf0569143</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwI7F4YUzxxY6TjKi0gFRaCYU5cpMLNUrtyE4R_fc4StXphvvep7tHyD2wGQDLn1aLl1nMgM_imKdZBhdkAkmSRSyR_JJMWCog4sDkNbnx_ocxECIVE3KY233ncIfG61-kX6ZG53tlam2-qTW03yH9tC1S29DiYAy2dPOna6SF7eha907Xqtch2Fg3hrHVaqtb3R8HZq2M9ZUKBctW-R39wL11x1ty1ajW491pTkmxXBTzt2i1eX2fP6-iiid5H0mUGVO4lSxNZMoE1BxSCUI1olKx4FjzDJhoYl7lCc9zKQGzXKkmPJ2D4FPCxtrKWe8dNmXn9F65YwmsHKyVwVo5WCtP1gLyOCKdGs5unDKV9mcuToEHdUnIPYw5jYjntRSQh1P5P6SpdaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Taehoon Kim ; Sarpatwari, K. ; Koka, S. ; Hongmei Wang</creator><creatorcontrib>Taehoon Kim ; Sarpatwari, K. ; Koka, S. ; Hongmei Wang</creatorcontrib><description>We report the role of tunnel oxide (TO) top nitridation (TN) in the reliability of nanoscale Flash memory and provide comprehensive understanding for the mechanism. TN was expected to potentially improve the TO quality by protecting against damages from edge encroachment and other processes. However, instead of net improvement, we found a tradeoff between endurance (charge trap) and retention (charge detrap and leakage) in the reliability of the cell array. We find that more charges are trapped in the TO with increasing nitrogen concentration, although detrapping can be decreased in a limited concentration. This suggests that the defect in the TN layer (SiON) includes a deep energy trap, thus resulting in a more strongly bound charge. Increasing nitrogen concentration also degrades charge retention from TO leakage but can be better for the same electrical oxide thickness. Evaluating a band diagram suggests that the possible improvement arises from the greater physical oxide thickness, although the barrier height for electron transmission is lower. This suggests that TO leakage is dominated by an inelastic trap-assisted tunneling mode using multiple direct tunneling through deep oxide traps. The results are indicative of the intrinsic impact of TN, regardless of bulk nitrogen or hydrogen incorporation.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2013.2237881</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Charge trap ; Design. Technologies. Operation analysis. Testing ; Electron traps ; Electronics ; endurance ; Exact sciences and technology ; Flash memory ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Magnetic and optical mass memories ; Molecular electronics, nanoelectronics ; Nanoscale devices ; Nitrogen ; plasma nitridation ; Reliability ; retention ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; silicon oxynitride (SiON) ; Storage and reproduction of information ; top nitridation (TN) ; trap-assisted tunneling (TAT) ; Tunneling</subject><ispartof>IEEE electron device letters, 2013-03, Vol.34 (3), p.396-398</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-6e680aeb607567041d317614af4ca243ed38104f23c95399661e89aaf0569143</citedby><cites>FETCH-LOGICAL-c359t-6e680aeb607567041d317614af4ca243ed38104f23c95399661e89aaf0569143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6419756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6419756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27130145$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Taehoon Kim</creatorcontrib><creatorcontrib>Sarpatwari, K.</creatorcontrib><creatorcontrib>Koka, S.</creatorcontrib><creatorcontrib>Hongmei Wang</creatorcontrib><title>Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>We report the role of tunnel oxide (TO) top nitridation (TN) in the reliability of nanoscale Flash memory and provide comprehensive understanding for the mechanism. TN was expected to potentially improve the TO quality by protecting against damages from edge encroachment and other processes. However, instead of net improvement, we found a tradeoff between endurance (charge trap) and retention (charge detrap and leakage) in the reliability of the cell array. We find that more charges are trapped in the TO with increasing nitrogen concentration, although detrapping can be decreased in a limited concentration. This suggests that the defect in the TN layer (SiON) includes a deep energy trap, thus resulting in a more strongly bound charge. Increasing nitrogen concentration also degrades charge retention from TO leakage but can be better for the same electrical oxide thickness. Evaluating a band diagram suggests that the possible improvement arises from the greater physical oxide thickness, although the barrier height for electron transmission is lower. This suggests that TO leakage is dominated by an inelastic trap-assisted tunneling mode using multiple direct tunneling through deep oxide traps. The results are indicative of the intrinsic impact of TN, regardless of bulk nitrogen or hydrogen incorporation.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Charge trap</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electron traps</subject><subject>Electronics</subject><subject>endurance</subject><subject>Exact sciences and technology</subject><subject>Flash memory</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Magnetic and optical mass memories</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanoscale devices</subject><subject>Nitrogen</subject><subject>plasma nitridation</subject><subject>Reliability</subject><subject>retention</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>silicon oxynitride (SiON)</subject><subject>Storage and reproduction of information</subject><subject>top nitridation (TN)</subject><subject>trap-assisted tunneling (TAT)</subject><subject>Tunneling</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQRi0EEqWwI7F4YUzxxY6TjKi0gFRaCYU5cpMLNUrtyE4R_fc4StXphvvep7tHyD2wGQDLn1aLl1nMgM_imKdZBhdkAkmSRSyR_JJMWCog4sDkNbnx_ocxECIVE3KY233ncIfG61-kX6ZG53tlam2-qTW03yH9tC1S29DiYAy2dPOna6SF7eha907Xqtch2Fg3hrHVaqtb3R8HZq2M9ZUKBctW-R39wL11x1ty1ajW491pTkmxXBTzt2i1eX2fP6-iiid5H0mUGVO4lSxNZMoE1BxSCUI1olKx4FjzDJhoYl7lCc9zKQGzXKkmPJ2D4FPCxtrKWe8dNmXn9F65YwmsHKyVwVo5WCtP1gLyOCKdGs5unDKV9mcuToEHdUnIPYw5jYjntRSQh1P5P6SpdaI</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Taehoon Kim</creator><creator>Sarpatwari, K.</creator><creator>Koka, S.</creator><creator>Hongmei Wang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130301</creationdate><title>Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory</title><author>Taehoon Kim ; Sarpatwari, K. ; Koka, S. ; Hongmei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6e680aeb607567041d317614af4ca243ed38104f23c95399661e89aaf0569143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Charge trap</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electron traps</topic><topic>Electronics</topic><topic>endurance</topic><topic>Exact sciences and technology</topic><topic>Flash memory</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Magnetic and optical mass memories</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanoscale devices</topic><topic>Nitrogen</topic><topic>plasma nitridation</topic><topic>Reliability</topic><topic>retention</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>silicon oxynitride (SiON)</topic><topic>Storage and reproduction of information</topic><topic>top nitridation (TN)</topic><topic>trap-assisted tunneling (TAT)</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taehoon Kim</creatorcontrib><creatorcontrib>Sarpatwari, K.</creatorcontrib><creatorcontrib>Koka, S.</creatorcontrib><creatorcontrib>Hongmei Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taehoon Kim</au><au>Sarpatwari, K.</au><au>Koka, S.</au><au>Hongmei Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>34</volume><issue>3</issue><spage>396</spage><epage>398</epage><pages>396-398</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>We report the role of tunnel oxide (TO) top nitridation (TN) in the reliability of nanoscale Flash memory and provide comprehensive understanding for the mechanism. TN was expected to potentially improve the TO quality by protecting against damages from edge encroachment and other processes. However, instead of net improvement, we found a tradeoff between endurance (charge trap) and retention (charge detrap and leakage) in the reliability of the cell array. We find that more charges are trapped in the TO with increasing nitrogen concentration, although detrapping can be decreased in a limited concentration. This suggests that the defect in the TN layer (SiON) includes a deep energy trap, thus resulting in a more strongly bound charge. Increasing nitrogen concentration also degrades charge retention from TO leakage but can be better for the same electrical oxide thickness. Evaluating a band diagram suggests that the possible improvement arises from the greater physical oxide thickness, although the barrier height for electron transmission is lower. This suggests that TO leakage is dominated by an inelastic trap-assisted tunneling mode using multiple direct tunneling through deep oxide traps. The results are indicative of the intrinsic impact of TN, regardless of bulk nitrogen or hydrogen incorporation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2013.2237881</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2013-03, Vol.34 (3), p.396-398
issn 0741-3106
1558-0563
language eng
recordid cdi_pascalfrancis_primary_27130145
source IEEE Electronic Library (IEL)
subjects Applied sciences
Arrays
Charge trap
Design. Technologies. Operation analysis. Testing
Electron traps
Electronics
endurance
Exact sciences and technology
Flash memory
Integrated circuits
Integrated circuits by function (including memories and processors)
Magnetic and optical mass memories
Molecular electronics, nanoelectronics
Nanoscale devices
Nitrogen
plasma nitridation
Reliability
retention
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
silicon oxynitride (SiON)
Storage and reproduction of information
top nitridation (TN)
trap-assisted tunneling (TAT)
Tunneling
title Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Understanding%20on%20the%20Role%20of%20Tunnel%20Oxide%20Top%20Nitridation%20for%20the%20Reliability%20of%20Nanoscale%20Flash%20Memory&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Taehoon%20Kim&rft.date=2013-03-01&rft.volume=34&rft.issue=3&rft.spage=396&rft.epage=398&rft.pages=396-398&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2013.2237881&rft_dat=%3Cpascalfrancis_RIE%3E27130145%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6419756&rfr_iscdi=true