Stability for Neural Networks With Time-Varying Delays via Some New Approaches
This paper considers the problem of delay-dependent stability criteria for neural networks with time-varying delays. First, by constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative stability criterion is established in terms of linear matrix inequalities. Second, by prop...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2013-02, Vol.24 (2), p.181-193 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 2 |
container_start_page | 181 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 24 |
creator | Oh-Min Kwon Myeong-Jin Park Sang-Moon Lee Park, J. H. Eun-Jong Cha |
description | This paper considers the problem of delay-dependent stability criteria for neural networks with time-varying delays. First, by constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative stability criterion is established in terms of linear matrix inequalities. Second, by proposing novel activation function conditions which have not been proposed so far, further improved stability criteria are proposed. Finally, three numerical examples used in the literature are given to show the improvements over the existing criteria and the effectiveness of the proposed idea. |
doi_str_mv | 10.1109/TNNLS.2012.2224883 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_26906748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6376233</ieee_id><sourcerecordid>1523404738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-316c4d451714a119b4a078d9de0cc7ea0e0e751add555e2338177ead249da03f3</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhkVJaYKbP9BCWQiBXNbR6HP3GPLRFox7sJP2JmTtbKNk1-tIuwn-95Vj14VcOpcZpOedYeYl5BPQMQAtz-fT6WQ2ZhTYmDEmioK_I0cMFMsZL4qDfa1_HZLjGB9oCkWlEuUHcph4WjAtjsh01tuFb3y_zuouZFMcgm1S6l-68Bizn76_z-a-xfzOhrVf_s6usLHrmD17m826FhP6kl2sVqGz7h7jR_K-tk3E410ekdub6_nlt3zy4-v3y4tJ7gSIPuegnKiEBA3CApQLYakuqrJC6pxGS5GilmCrSkqJjPMCdHqumCgrS3nNR-Rs2zcNfhow9qb10WHT2CV2QzQgGRdUaF78H-UglWQyKUbk5A360A1hmRYxwHRCSuAbim0pF7oYA9ZmFXybzmOAmo035tUbs_HG7LxJoi-71sOixWov-etEAk53gI3ONnWwS-fjP06VVGmxWefzlvOIuP9WXKt0Jv4HdjydMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272559132</pqid></control><display><type>article</type><title>Stability for Neural Networks With Time-Varying Delays via Some New Approaches</title><source>IEEE Electronic Library (IEL)</source><creator>Oh-Min Kwon ; Myeong-Jin Park ; Sang-Moon Lee ; Park, J. H. ; Eun-Jong Cha</creator><creatorcontrib>Oh-Min Kwon ; Myeong-Jin Park ; Sang-Moon Lee ; Park, J. H. ; Eun-Jong Cha</creatorcontrib><description>This paper considers the problem of delay-dependent stability criteria for neural networks with time-varying delays. First, by constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative stability criterion is established in terms of linear matrix inequalities. Second, by proposing novel activation function conditions which have not been proposed so far, further improved stability criteria are proposed. Finally, three numerical examples used in the literature are given to show the improvements over the existing criteria and the effectiveness of the proposed idea.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2012.2224883</identifier><identifier>PMID: 24808274</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Biological neural networks ; Computer science; control theory; systems ; Connectionism. Neural networks ; Control system analysis ; Control theory. Systems ; Delay ; Exact sciences and technology ; Lyapunov method ; neural networks ; Neural Networks (Computer) ; stability ; Stability criteria ; Symmetric matrices ; Time Factors ; time-varying delays ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2013-02, Vol.24 (2), p.181-193</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-316c4d451714a119b4a078d9de0cc7ea0e0e751add555e2338177ead249da03f3</citedby><cites>FETCH-LOGICAL-c414t-316c4d451714a119b4a078d9de0cc7ea0e0e751add555e2338177ead249da03f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6376233$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6376233$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26906748$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24808274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh-Min Kwon</creatorcontrib><creatorcontrib>Myeong-Jin Park</creatorcontrib><creatorcontrib>Sang-Moon Lee</creatorcontrib><creatorcontrib>Park, J. H.</creatorcontrib><creatorcontrib>Eun-Jong Cha</creatorcontrib><title>Stability for Neural Networks With Time-Varying Delays via Some New Approaches</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper considers the problem of delay-dependent stability criteria for neural networks with time-varying delays. First, by constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative stability criterion is established in terms of linear matrix inequalities. Second, by proposing novel activation function conditions which have not been proposed so far, further improved stability criteria are proposed. Finally, three numerical examples used in the literature are given to show the improvements over the existing criteria and the effectiveness of the proposed idea.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological neural networks</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Lyapunov method</subject><subject>neural networks</subject><subject>Neural Networks (Computer)</subject><subject>stability</subject><subject>Stability criteria</subject><subject>Symmetric matrices</subject><subject>Time Factors</subject><subject>time-varying delays</subject><subject>Vectors</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1rGzEQhkVJaYKbP9BCWQiBXNbR6HP3GPLRFox7sJP2JmTtbKNk1-tIuwn-95Vj14VcOpcZpOedYeYl5BPQMQAtz-fT6WQ2ZhTYmDEmioK_I0cMFMsZL4qDfa1_HZLjGB9oCkWlEuUHcph4WjAtjsh01tuFb3y_zuouZFMcgm1S6l-68Bizn76_z-a-xfzOhrVf_s6usLHrmD17m826FhP6kl2sVqGz7h7jR_K-tk3E410ekdub6_nlt3zy4-v3y4tJ7gSIPuegnKiEBA3CApQLYakuqrJC6pxGS5GilmCrSkqJjPMCdHqumCgrS3nNR-Rs2zcNfhow9qb10WHT2CV2QzQgGRdUaF78H-UglWQyKUbk5A360A1hmRYxwHRCSuAbim0pF7oYA9ZmFXybzmOAmo035tUbs_HG7LxJoi-71sOixWov-etEAk53gI3ONnWwS-fjP06VVGmxWefzlvOIuP9WXKt0Jv4HdjydMg</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Oh-Min Kwon</creator><creator>Myeong-Jin Park</creator><creator>Sang-Moon Lee</creator><creator>Park, J. H.</creator><creator>Eun-Jong Cha</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130201</creationdate><title>Stability for Neural Networks With Time-Varying Delays via Some New Approaches</title><author>Oh-Min Kwon ; Myeong-Jin Park ; Sang-Moon Lee ; Park, J. H. ; Eun-Jong Cha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-316c4d451714a119b4a078d9de0cc7ea0e0e751add555e2338177ead249da03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological neural networks</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Lyapunov method</topic><topic>neural networks</topic><topic>Neural Networks (Computer)</topic><topic>stability</topic><topic>Stability criteria</topic><topic>Symmetric matrices</topic><topic>Time Factors</topic><topic>time-varying delays</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Oh-Min Kwon</creatorcontrib><creatorcontrib>Myeong-Jin Park</creatorcontrib><creatorcontrib>Sang-Moon Lee</creatorcontrib><creatorcontrib>Park, J. H.</creatorcontrib><creatorcontrib>Eun-Jong Cha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oh-Min Kwon</au><au>Myeong-Jin Park</au><au>Sang-Moon Lee</au><au>Park, J. H.</au><au>Eun-Jong Cha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability for Neural Networks With Time-Varying Delays via Some New Approaches</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>24</volume><issue>2</issue><spage>181</spage><epage>193</epage><pages>181-193</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper considers the problem of delay-dependent stability criteria for neural networks with time-varying delays. First, by constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative stability criterion is established in terms of linear matrix inequalities. Second, by proposing novel activation function conditions which have not been proposed so far, further improved stability criteria are proposed. Finally, three numerical examples used in the literature are given to show the improvements over the existing criteria and the effectiveness of the proposed idea.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24808274</pmid><doi>10.1109/TNNLS.2012.2224883</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2013-02, Vol.24 (2), p.181-193 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_pascalfrancis_primary_26906748 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Biological neural networks Computer science control theory systems Connectionism. Neural networks Control system analysis Control theory. Systems Delay Exact sciences and technology Lyapunov method neural networks Neural Networks (Computer) stability Stability criteria Symmetric matrices Time Factors time-varying delays Vectors |
title | Stability for Neural Networks With Time-Varying Delays via Some New Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20for%20Neural%20Networks%20With%20Time-Varying%20Delays%20via%20Some%20New%20Approaches&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Oh-Min%20Kwon&rft.date=2013-02-01&rft.volume=24&rft.issue=2&rft.spage=181&rft.epage=193&rft.pages=181-193&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2012.2224883&rft_dat=%3Cproquest_RIE%3E1523404738%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272559132&rft_id=info:pmid/24808274&rft_ieee_id=6376233&rfr_iscdi=true |