Stability for Neural Networks With Time-Varying Delays via Some New Approaches

This paper considers the problem of delay-dependent stability criteria for neural networks with time-varying delays. First, by constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative stability criterion is established in terms of linear matrix inequalities. Second, by prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2013-02, Vol.24 (2), p.181-193
Hauptverfasser: Oh-Min Kwon, Myeong-Jin Park, Sang-Moon Lee, Park, J. H., Eun-Jong Cha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 181
container_title IEEE transaction on neural networks and learning systems
container_volume 24
creator Oh-Min Kwon
Myeong-Jin Park
Sang-Moon Lee
Park, J. H.
Eun-Jong Cha
description This paper considers the problem of delay-dependent stability criteria for neural networks with time-varying delays. First, by constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative stability criterion is established in terms of linear matrix inequalities. Second, by proposing novel activation function conditions which have not been proposed so far, further improved stability criteria are proposed. Finally, three numerical examples used in the literature are given to show the improvements over the existing criteria and the effectiveness of the proposed idea.
doi_str_mv 10.1109/TNNLS.2012.2224883
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_26906748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6376233</ieee_id><sourcerecordid>1523404738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-316c4d451714a119b4a078d9de0cc7ea0e0e751add555e2338177ead249da03f3</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhkVJaYKbP9BCWQiBXNbR6HP3GPLRFox7sJP2JmTtbKNk1-tIuwn-95Vj14VcOpcZpOedYeYl5BPQMQAtz-fT6WQ2ZhTYmDEmioK_I0cMFMsZL4qDfa1_HZLjGB9oCkWlEuUHcph4WjAtjsh01tuFb3y_zuouZFMcgm1S6l-68Bizn76_z-a-xfzOhrVf_s6usLHrmD17m826FhP6kl2sVqGz7h7jR_K-tk3E410ekdub6_nlt3zy4-v3y4tJ7gSIPuegnKiEBA3CApQLYakuqrJC6pxGS5GilmCrSkqJjPMCdHqumCgrS3nNR-Rs2zcNfhow9qb10WHT2CV2QzQgGRdUaF78H-UglWQyKUbk5A360A1hmRYxwHRCSuAbim0pF7oYA9ZmFXybzmOAmo035tUbs_HG7LxJoi-71sOixWov-etEAk53gI3ONnWwS-fjP06VVGmxWefzlvOIuP9WXKt0Jv4HdjydMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272559132</pqid></control><display><type>article</type><title>Stability for Neural Networks With Time-Varying Delays via Some New Approaches</title><source>IEEE Electronic Library (IEL)</source><creator>Oh-Min Kwon ; Myeong-Jin Park ; Sang-Moon Lee ; Park, J. H. ; Eun-Jong Cha</creator><creatorcontrib>Oh-Min Kwon ; Myeong-Jin Park ; Sang-Moon Lee ; Park, J. H. ; Eun-Jong Cha</creatorcontrib><description>This paper considers the problem of delay-dependent stability criteria for neural networks with time-varying delays. First, by constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative stability criterion is established in terms of linear matrix inequalities. Second, by proposing novel activation function conditions which have not been proposed so far, further improved stability criteria are proposed. Finally, three numerical examples used in the literature are given to show the improvements over the existing criteria and the effectiveness of the proposed idea.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2012.2224883</identifier><identifier>PMID: 24808274</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Biological neural networks ; Computer science; control theory; systems ; Connectionism. Neural networks ; Control system analysis ; Control theory. Systems ; Delay ; Exact sciences and technology ; Lyapunov method ; neural networks ; Neural Networks (Computer) ; stability ; Stability criteria ; Symmetric matrices ; Time Factors ; time-varying delays ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2013-02, Vol.24 (2), p.181-193</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-316c4d451714a119b4a078d9de0cc7ea0e0e751add555e2338177ead249da03f3</citedby><cites>FETCH-LOGICAL-c414t-316c4d451714a119b4a078d9de0cc7ea0e0e751add555e2338177ead249da03f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6376233$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6376233$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26906748$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24808274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh-Min Kwon</creatorcontrib><creatorcontrib>Myeong-Jin Park</creatorcontrib><creatorcontrib>Sang-Moon Lee</creatorcontrib><creatorcontrib>Park, J. H.</creatorcontrib><creatorcontrib>Eun-Jong Cha</creatorcontrib><title>Stability for Neural Networks With Time-Varying Delays via Some New Approaches</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper considers the problem of delay-dependent stability criteria for neural networks with time-varying delays. First, by constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative stability criterion is established in terms of linear matrix inequalities. Second, by proposing novel activation function conditions which have not been proposed so far, further improved stability criteria are proposed. Finally, three numerical examples used in the literature are given to show the improvements over the existing criteria and the effectiveness of the proposed idea.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological neural networks</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Lyapunov method</subject><subject>neural networks</subject><subject>Neural Networks (Computer)</subject><subject>stability</subject><subject>Stability criteria</subject><subject>Symmetric matrices</subject><subject>Time Factors</subject><subject>time-varying delays</subject><subject>Vectors</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1rGzEQhkVJaYKbP9BCWQiBXNbR6HP3GPLRFox7sJP2JmTtbKNk1-tIuwn-95Vj14VcOpcZpOedYeYl5BPQMQAtz-fT6WQ2ZhTYmDEmioK_I0cMFMsZL4qDfa1_HZLjGB9oCkWlEuUHcph4WjAtjsh01tuFb3y_zuouZFMcgm1S6l-68Bizn76_z-a-xfzOhrVf_s6usLHrmD17m826FhP6kl2sVqGz7h7jR_K-tk3E410ekdub6_nlt3zy4-v3y4tJ7gSIPuegnKiEBA3CApQLYakuqrJC6pxGS5GilmCrSkqJjPMCdHqumCgrS3nNR-Rs2zcNfhow9qb10WHT2CV2QzQgGRdUaF78H-UglWQyKUbk5A360A1hmRYxwHRCSuAbim0pF7oYA9ZmFXybzmOAmo035tUbs_HG7LxJoi-71sOixWov-etEAk53gI3ONnWwS-fjP06VVGmxWefzlvOIuP9WXKt0Jv4HdjydMg</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Oh-Min Kwon</creator><creator>Myeong-Jin Park</creator><creator>Sang-Moon Lee</creator><creator>Park, J. H.</creator><creator>Eun-Jong Cha</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130201</creationdate><title>Stability for Neural Networks With Time-Varying Delays via Some New Approaches</title><author>Oh-Min Kwon ; Myeong-Jin Park ; Sang-Moon Lee ; Park, J. H. ; Eun-Jong Cha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-316c4d451714a119b4a078d9de0cc7ea0e0e751add555e2338177ead249da03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological neural networks</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Lyapunov method</topic><topic>neural networks</topic><topic>Neural Networks (Computer)</topic><topic>stability</topic><topic>Stability criteria</topic><topic>Symmetric matrices</topic><topic>Time Factors</topic><topic>time-varying delays</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Oh-Min Kwon</creatorcontrib><creatorcontrib>Myeong-Jin Park</creatorcontrib><creatorcontrib>Sang-Moon Lee</creatorcontrib><creatorcontrib>Park, J. H.</creatorcontrib><creatorcontrib>Eun-Jong Cha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oh-Min Kwon</au><au>Myeong-Jin Park</au><au>Sang-Moon Lee</au><au>Park, J. H.</au><au>Eun-Jong Cha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability for Neural Networks With Time-Varying Delays via Some New Approaches</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>24</volume><issue>2</issue><spage>181</spage><epage>193</epage><pages>181-193</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper considers the problem of delay-dependent stability criteria for neural networks with time-varying delays. First, by constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative stability criterion is established in terms of linear matrix inequalities. Second, by proposing novel activation function conditions which have not been proposed so far, further improved stability criteria are proposed. Finally, three numerical examples used in the literature are given to show the improvements over the existing criteria and the effectiveness of the proposed idea.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24808274</pmid><doi>10.1109/TNNLS.2012.2224883</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2013-02, Vol.24 (2), p.181-193
issn 2162-237X
2162-2388
language eng
recordid cdi_pascalfrancis_primary_26906748
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Biological neural networks
Computer science
control theory
systems
Connectionism. Neural networks
Control system analysis
Control theory. Systems
Delay
Exact sciences and technology
Lyapunov method
neural networks
Neural Networks (Computer)
stability
Stability criteria
Symmetric matrices
Time Factors
time-varying delays
Vectors
title Stability for Neural Networks With Time-Varying Delays via Some New Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20for%20Neural%20Networks%20With%20Time-Varying%20Delays%20via%20Some%20New%20Approaches&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Oh-Min%20Kwon&rft.date=2013-02-01&rft.volume=24&rft.issue=2&rft.spage=181&rft.epage=193&rft.pages=181-193&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2012.2224883&rft_dat=%3Cproquest_RIE%3E1523404738%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272559132&rft_id=info:pmid/24808274&rft_ieee_id=6376233&rfr_iscdi=true