Dynamics and Frequency Response of Microring-Based Optical Modulator Considering Nonlinear Effects

In this paper, we analyze dynamics and frequency response of GaAs-based microring modulators at the 1.55 μm using the finite-difference time-domain method. Two types of modulation are investigated: pump-probe configuration and modulation of the coupling coefficient. The pump-probe signals are tuned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2012-12, Vol.30 (23), p.3720-3726
Hauptverfasser: Mohammadi, F., Ahmadi, V., Gandomkar, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3726
container_issue 23
container_start_page 3720
container_title Journal of lightwave technology
container_volume 30
creator Mohammadi, F.
Ahmadi, V.
Gandomkar, M.
description In this paper, we analyze dynamics and frequency response of GaAs-based microring modulators at the 1.55 μm using the finite-difference time-domain method. Two types of modulation are investigated: pump-probe configuration and modulation of the coupling coefficient. The pump-probe signals are tuned at separate resonance wavelengths of the microring. Change of effective refractive index of the microring by two-photon absorption is used to modulate the probe beam. By applying probe beam in four timing configurations, it is shown that the wavelength shift of the probe depends not only on the pump intensity but also on the interaction length over which the pump and probe pulses overlap. It is also shown that free-carrier absorption increases when the temporal width of pump signal is wide enough. Modulation bandwidth of microring in the presence of nonlinear effects is investigated and it is shown that the bandwidth is in 10 GHz range. In order to increase the bandwidth of the intensity modulator, controlled coupling is used. It is shown that in this case, modulation bandwidth of waveguide-ring coupling strength becomes three times wider.
doi_str_mv 10.1109/JLT.2012.2227240
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_26777822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6352819</ieee_id><sourcerecordid>26777822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b86d6af757ab870adb9e69087a0cc0788f1b051fdacd13945e62dc3a8dfb457e3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqWwI7F4YUzxRxI7I5SWD7VUQmWOLvYZGaVOsNuh_55UrZhueJ_3dPcQcsvZhHNWPbwv1hPBuJgIIZTI2RkZ8aLQmRBcnpMRU1JmegguyVVKP4zxPNdqRJrnfYCNN4lCsHQe8XeHwezpJ6a-Cwlp5-jSm9hFH76zJ0ho6arfegMtXXZ218K2i3Q6oN7igaEfXWh9QIh05hyabbomFw7ahDenOSZf89l6-potVi9v08dFZkQlt1mjS1uCU4WCRisGtqmwrJhWwIxhSmvHG1ZwZ8FYLqu8wFJYI0Fb1-SFQjkm7Lh3uDaliK7uo99A3Nec1QdH9eCoPjiqT46Gyv2x0kMaPnIRgvHpvydKpZQWYuDujpxHxP-4lIXQvJJ_o8ZxaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics and Frequency Response of Microring-Based Optical Modulator Considering Nonlinear Effects</title><source>IEEE Electronic Library (IEL)</source><creator>Mohammadi, F. ; Ahmadi, V. ; Gandomkar, M.</creator><creatorcontrib>Mohammadi, F. ; Ahmadi, V. ; Gandomkar, M.</creatorcontrib><description>In this paper, we analyze dynamics and frequency response of GaAs-based microring modulators at the 1.55 μm using the finite-difference time-domain method. Two types of modulation are investigated: pump-probe configuration and modulation of the coupling coefficient. The pump-probe signals are tuned at separate resonance wavelengths of the microring. Change of effective refractive index of the microring by two-photon absorption is used to modulate the probe beam. By applying probe beam in four timing configurations, it is shown that the wavelength shift of the probe depends not only on the pump intensity but also on the interaction length over which the pump and probe pulses overlap. It is also shown that free-carrier absorption increases when the temporal width of pump signal is wide enough. Modulation bandwidth of microring in the presence of nonlinear effects is investigated and it is shown that the bandwidth is in 10 GHz range. In order to increase the bandwidth of the intensity modulator, controlled coupling is used. It is shown that in this case, modulation bandwidth of waveguide-ring coupling strength becomes three times wider.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2012.2227240</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>All optical circuits ; All-optical modulation ; Applied sciences ; Circuit properties ; coupling factor modulation ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Finite difference methods ; free-carrier (FC) plasma effect ; Frequency response ; Fundamental areas of phenomenology (including applications) ; Integrated optics. Optical fibers and wave guides ; Laser optical systems: design and operation ; microring resonator ; Optical and optoelectronic circuits ; Optical modulation ; Optical resonators ; Optical ring resonators ; Optics ; Physics ; Resonators, cavities, amplifiers, arrays, and rings ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; two-photon absorption (TPA)</subject><ispartof>Journal of lightwave technology, 2012-12, Vol.30 (23), p.3720-3726</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b86d6af757ab870adb9e69087a0cc0788f1b051fdacd13945e62dc3a8dfb457e3</citedby><cites>FETCH-LOGICAL-c293t-b86d6af757ab870adb9e69087a0cc0788f1b051fdacd13945e62dc3a8dfb457e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6352819$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6352819$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26777822$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammadi, F.</creatorcontrib><creatorcontrib>Ahmadi, V.</creatorcontrib><creatorcontrib>Gandomkar, M.</creatorcontrib><title>Dynamics and Frequency Response of Microring-Based Optical Modulator Considering Nonlinear Effects</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, we analyze dynamics and frequency response of GaAs-based microring modulators at the 1.55 μm using the finite-difference time-domain method. Two types of modulation are investigated: pump-probe configuration and modulation of the coupling coefficient. The pump-probe signals are tuned at separate resonance wavelengths of the microring. Change of effective refractive index of the microring by two-photon absorption is used to modulate the probe beam. By applying probe beam in four timing configurations, it is shown that the wavelength shift of the probe depends not only on the pump intensity but also on the interaction length over which the pump and probe pulses overlap. It is also shown that free-carrier absorption increases when the temporal width of pump signal is wide enough. Modulation bandwidth of microring in the presence of nonlinear effects is investigated and it is shown that the bandwidth is in 10 GHz range. In order to increase the bandwidth of the intensity modulator, controlled coupling is used. It is shown that in this case, modulation bandwidth of waveguide-ring coupling strength becomes three times wider.</description><subject>All optical circuits</subject><subject>All-optical modulation</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>coupling factor modulation</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>free-carrier (FC) plasma effect</subject><subject>Frequency response</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Laser optical systems: design and operation</subject><subject>microring resonator</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical modulation</subject><subject>Optical resonators</subject><subject>Optical ring resonators</subject><subject>Optics</subject><subject>Physics</subject><subject>Resonators, cavities, amplifiers, arrays, and rings</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>two-photon absorption (TPA)</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqWwI7F4YUzxRxI7I5SWD7VUQmWOLvYZGaVOsNuh_55UrZhueJ_3dPcQcsvZhHNWPbwv1hPBuJgIIZTI2RkZ8aLQmRBcnpMRU1JmegguyVVKP4zxPNdqRJrnfYCNN4lCsHQe8XeHwezpJ6a-Cwlp5-jSm9hFH76zJ0ho6arfegMtXXZ218K2i3Q6oN7igaEfXWh9QIh05hyabbomFw7ahDenOSZf89l6-potVi9v08dFZkQlt1mjS1uCU4WCRisGtqmwrJhWwIxhSmvHG1ZwZ8FYLqu8wFJYI0Fb1-SFQjkm7Lh3uDaliK7uo99A3Nec1QdH9eCoPjiqT46Gyv2x0kMaPnIRgvHpvydKpZQWYuDujpxHxP-4lIXQvJJ_o8ZxaA</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Mohammadi, F.</creator><creator>Ahmadi, V.</creator><creator>Gandomkar, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121201</creationdate><title>Dynamics and Frequency Response of Microring-Based Optical Modulator Considering Nonlinear Effects</title><author>Mohammadi, F. ; Ahmadi, V. ; Gandomkar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b86d6af757ab870adb9e69087a0cc0788f1b051fdacd13945e62dc3a8dfb457e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>All optical circuits</topic><topic>All-optical modulation</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>coupling factor modulation</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>free-carrier (FC) plasma effect</topic><topic>Frequency response</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Laser optical systems: design and operation</topic><topic>microring resonator</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical modulation</topic><topic>Optical resonators</topic><topic>Optical ring resonators</topic><topic>Optics</topic><topic>Physics</topic><topic>Resonators, cavities, amplifiers, arrays, and rings</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>two-photon absorption (TPA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, F.</creatorcontrib><creatorcontrib>Ahmadi, V.</creatorcontrib><creatorcontrib>Gandomkar, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammadi, F.</au><au>Ahmadi, V.</au><au>Gandomkar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and Frequency Response of Microring-Based Optical Modulator Considering Nonlinear Effects</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>30</volume><issue>23</issue><spage>3720</spage><epage>3726</epage><pages>3720-3726</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, we analyze dynamics and frequency response of GaAs-based microring modulators at the 1.55 μm using the finite-difference time-domain method. Two types of modulation are investigated: pump-probe configuration and modulation of the coupling coefficient. The pump-probe signals are tuned at separate resonance wavelengths of the microring. Change of effective refractive index of the microring by two-photon absorption is used to modulate the probe beam. By applying probe beam in four timing configurations, it is shown that the wavelength shift of the probe depends not only on the pump intensity but also on the interaction length over which the pump and probe pulses overlap. It is also shown that free-carrier absorption increases when the temporal width of pump signal is wide enough. Modulation bandwidth of microring in the presence of nonlinear effects is investigated and it is shown that the bandwidth is in 10 GHz range. In order to increase the bandwidth of the intensity modulator, controlled coupling is used. It is shown that in this case, modulation bandwidth of waveguide-ring coupling strength becomes three times wider.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2012.2227240</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2012-12, Vol.30 (23), p.3720-3726
issn 0733-8724
1558-2213
language eng
recordid cdi_pascalfrancis_primary_26777822
source IEEE Electronic Library (IEL)
subjects All optical circuits
All-optical modulation
Applied sciences
Circuit properties
coupling factor modulation
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Finite difference methods
free-carrier (FC) plasma effect
Frequency response
Fundamental areas of phenomenology (including applications)
Integrated optics. Optical fibers and wave guides
Laser optical systems: design and operation
microring resonator
Optical and optoelectronic circuits
Optical modulation
Optical resonators
Optical ring resonators
Optics
Physics
Resonators, cavities, amplifiers, arrays, and rings
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
two-photon absorption (TPA)
title Dynamics and Frequency Response of Microring-Based Optical Modulator Considering Nonlinear Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20Frequency%20Response%20of%20Microring-Based%20Optical%20Modulator%20Considering%20Nonlinear%20Effects&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Mohammadi,%20F.&rft.date=2012-12-01&rft.volume=30&rft.issue=23&rft.spage=3720&rft.epage=3726&rft.pages=3720-3726&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2012.2227240&rft_dat=%3Cpascalfrancis_RIE%3E26777822%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6352819&rfr_iscdi=true