Dynamics and Frequency Response of Microring-Based Optical Modulator Considering Nonlinear Effects

In this paper, we analyze dynamics and frequency response of GaAs-based microring modulators at the 1.55 μm using the finite-difference time-domain method. Two types of modulation are investigated: pump-probe configuration and modulation of the coupling coefficient. The pump-probe signals are tuned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2012-12, Vol.30 (23), p.3720-3726
Hauptverfasser: Mohammadi, F., Ahmadi, V., Gandomkar, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we analyze dynamics and frequency response of GaAs-based microring modulators at the 1.55 μm using the finite-difference time-domain method. Two types of modulation are investigated: pump-probe configuration and modulation of the coupling coefficient. The pump-probe signals are tuned at separate resonance wavelengths of the microring. Change of effective refractive index of the microring by two-photon absorption is used to modulate the probe beam. By applying probe beam in four timing configurations, it is shown that the wavelength shift of the probe depends not only on the pump intensity but also on the interaction length over which the pump and probe pulses overlap. It is also shown that free-carrier absorption increases when the temporal width of pump signal is wide enough. Modulation bandwidth of microring in the presence of nonlinear effects is investigated and it is shown that the bandwidth is in 10 GHz range. In order to increase the bandwidth of the intensity modulator, controlled coupling is used. It is shown that in this case, modulation bandwidth of waveguide-ring coupling strength becomes three times wider.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2012.2227240