Optimized prefabricated vertical wells for light nonaqueous phase liquid recovery
Work presented herein examines optimization of prefabricated vertical well (PVW) performance during the extraction of light nonaqueous phase liquids (LNAPLs) in liquid and vapor phases in terms of lowering liquid level for promotion of vapor phase extraction, the magnitude of the vacuum head, and th...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2012-12, Vol.49 (12), p.1434-1443 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1443 |
---|---|
container_issue | 12 |
container_start_page | 1434 |
container_title | Canadian geotechnical journal |
container_volume | 49 |
creator | SHARMIN, N GABR, M. A |
description | Work presented herein examines optimization of prefabricated vertical well (PVW) performance during the extraction of light nonaqueous phase liquids (LNAPLs) in liquid and vapor phases in terms of lowering liquid level for promotion of vapor phase extraction, the magnitude of the vacuum head, and the spatial spacing of the PVWs. MATLAB’s genetic algorithm toolbox is linked to BIOSLURP (a multiphase transport finite element program) to achieve specific objectives with respect to time, vacuum level, or PVW spatial location. The optimization process is set up to control the decision variables (input to the BIOSLURP), on the basis of the objective function, defined as: (i) optimum time for lowering water level in view of impact of the residual saturation on free phase extraction processes; (ii) the magnitude of vacuum level for maximum vapor phase mass extraction and time at which air circulation should be adopted based on liquid level within the subsurface; and (iii) the efficient spatial placement of PVWs to maximize the free LNAPL extraction. Results indicated that a higher water saturation (wetting fluid) leads to lower LNAPL (nonwetting fluid) relative permeability and therefore prolonged time to lower the liquid level. Within the range of vacuum levels achieved in the field, there is an optimized vacuum level, which leads to highest extraction rate in the gas phase. Analysis included the feasibility of optimizing PVWs spacing and the illustrated process serves as a guidance approach to specify operating parameters. |
doi_str_mv | 10.1139/t2012-097 |
format | Article |
fullrecord | <record><control><sourceid>gale_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_26777020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A312173032</galeid><sourcerecordid>A312173032</sourcerecordid><originalsourceid>FETCH-LOGICAL-a646t-f3e16e66a11b1d8630ddd61f29114fbb136c72804973b43eb7906917dcf410093</originalsourceid><addsrcrecordid>eNqV0m1rFDEQB_BFFDyrL_wGiyIouHUmWZPbl6VYLRSLT69DNju5S9nb3Uty2vrpnbNFrSyC5MXm4TfDsPyL4jHCIaJsXmUBKCpo9J1igQKWlQKEu8UCgPdS6fp-8SClCwCsayEWxYfzKYdN-E5dOUXyto3B2cynrxQzb_vyG_V9Kv0Yyz6s1rkcxsFudzTuUjmtbSK-3u5CV0ZyIxddPSzuedsnenTzPSi-nLz5fPyuOjt_e3p8dFZZVatceUmoSCmL2GK3VBK6rlPoRYNY-7ZFqZwWS6gbLdtaUqsbUA3qzvkaARp5UDy_7jvFkedJ2WxCcjysHfbDGRRKaRRav2b69C96Me7iwNOxErJeConit1rZnkwY_Jijdfum5ojfUUuQe1XNqBUNFG0_DuQDX9_yT2a8m8LW_IkOZxCvjjbBzXZ9cauATabLvLK7lMzpp4__Yd_PWhfHlDgQZophY-OVQTD7gJmfATMcMLbPbv6qTRwUH-3gQvpVIJTWGgSwe3nthugiJbLRrf_R9gd_Ntdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1223482312</pqid></control><display><type>article</type><title>Optimized prefabricated vertical wells for light nonaqueous phase liquid recovery</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>SHARMIN, N ; GABR, M. A</creator><creatorcontrib>SHARMIN, N ; GABR, M. A</creatorcontrib><description>Work presented herein examines optimization of prefabricated vertical well (PVW) performance during the extraction of light nonaqueous phase liquids (LNAPLs) in liquid and vapor phases in terms of lowering liquid level for promotion of vapor phase extraction, the magnitude of the vacuum head, and the spatial spacing of the PVWs. MATLAB’s genetic algorithm toolbox is linked to BIOSLURP (a multiphase transport finite element program) to achieve specific objectives with respect to time, vacuum level, or PVW spatial location. The optimization process is set up to control the decision variables (input to the BIOSLURP), on the basis of the objective function, defined as: (i) optimum time for lowering water level in view of impact of the residual saturation on free phase extraction processes; (ii) the magnitude of vacuum level for maximum vapor phase mass extraction and time at which air circulation should be adopted based on liquid level within the subsurface; and (iii) the efficient spatial placement of PVWs to maximize the free LNAPL extraction. Results indicated that a higher water saturation (wetting fluid) leads to lower LNAPL (nonwetting fluid) relative permeability and therefore prolonged time to lower the liquid level. Within the range of vacuum levels achieved in the field, there is an optimized vacuum level, which leads to highest extraction rate in the gas phase. Analysis included the feasibility of optimizing PVWs spacing and the illustrated process serves as a guidance approach to specify operating parameters.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/t2012-097</identifier><identifier>CODEN: CGJOAH</identifier><language>eng</language><publisher>Ottawa, ON: NRC Research Press</publisher><subject>Air circulation ; air mass ; contaminant transport ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Extraction ; Extraction processes ; Finite element method ; Fluid flow ; Genetic algorithms ; Geotechnology ; groundwater ; light nonaqueous phase liquids (LNAPL) ; Liquid levels ; liquide immiscible léger (LIL) ; Liquids ; Mathematical optimization ; Matlab ; modeling ; Nonaqueous phase liquids ; Objective function ; optimisation ; Optimization ; Permeability ; perméabilité ; Pollution, environment geology ; Properties ; puits préfabriqués ; remediation technology ; Saturation ; subsurface ; transport de contaminants ; vacuum ; Vapor phases ; Water levels ; Wells</subject><ispartof>Canadian geotechnical journal, 2012-12, Vol.49 (12), p.1434-1443</ispartof><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 NRC Research Press</rights><rights>Copyright National Research Council of Canada Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a646t-f3e16e66a11b1d8630ddd61f29114fbb136c72804973b43eb7906917dcf410093</citedby><cites>FETCH-LOGICAL-a646t-f3e16e66a11b1d8630ddd61f29114fbb136c72804973b43eb7906917dcf410093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/t2012-097$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/t2012-097$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,780,784,2932,27924,27925,64428,65234</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26777020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SHARMIN, N</creatorcontrib><creatorcontrib>GABR, M. A</creatorcontrib><title>Optimized prefabricated vertical wells for light nonaqueous phase liquid recovery</title><title>Canadian geotechnical journal</title><description>Work presented herein examines optimization of prefabricated vertical well (PVW) performance during the extraction of light nonaqueous phase liquids (LNAPLs) in liquid and vapor phases in terms of lowering liquid level for promotion of vapor phase extraction, the magnitude of the vacuum head, and the spatial spacing of the PVWs. MATLAB’s genetic algorithm toolbox is linked to BIOSLURP (a multiphase transport finite element program) to achieve specific objectives with respect to time, vacuum level, or PVW spatial location. The optimization process is set up to control the decision variables (input to the BIOSLURP), on the basis of the objective function, defined as: (i) optimum time for lowering water level in view of impact of the residual saturation on free phase extraction processes; (ii) the magnitude of vacuum level for maximum vapor phase mass extraction and time at which air circulation should be adopted based on liquid level within the subsurface; and (iii) the efficient spatial placement of PVWs to maximize the free LNAPL extraction. Results indicated that a higher water saturation (wetting fluid) leads to lower LNAPL (nonwetting fluid) relative permeability and therefore prolonged time to lower the liquid level. Within the range of vacuum levels achieved in the field, there is an optimized vacuum level, which leads to highest extraction rate in the gas phase. Analysis included the feasibility of optimizing PVWs spacing and the illustrated process serves as a guidance approach to specify operating parameters.</description><subject>Air circulation</subject><subject>air mass</subject><subject>contaminant transport</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Extraction processes</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Genetic algorithms</subject><subject>Geotechnology</subject><subject>groundwater</subject><subject>light nonaqueous phase liquids (LNAPL)</subject><subject>Liquid levels</subject><subject>liquide immiscible léger (LIL)</subject><subject>Liquids</subject><subject>Mathematical optimization</subject><subject>Matlab</subject><subject>modeling</subject><subject>Nonaqueous phase liquids</subject><subject>Objective function</subject><subject>optimisation</subject><subject>Optimization</subject><subject>Permeability</subject><subject>perméabilité</subject><subject>Pollution, environment geology</subject><subject>Properties</subject><subject>puits préfabriqués</subject><subject>remediation technology</subject><subject>Saturation</subject><subject>subsurface</subject><subject>transport de contaminants</subject><subject>vacuum</subject><subject>Vapor phases</subject><subject>Water levels</subject><subject>Wells</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqV0m1rFDEQB_BFFDyrL_wGiyIouHUmWZPbl6VYLRSLT69DNju5S9nb3Uty2vrpnbNFrSyC5MXm4TfDsPyL4jHCIaJsXmUBKCpo9J1igQKWlQKEu8UCgPdS6fp-8SClCwCsayEWxYfzKYdN-E5dOUXyto3B2cynrxQzb_vyG_V9Kv0Yyz6s1rkcxsFudzTuUjmtbSK-3u5CV0ZyIxddPSzuedsnenTzPSi-nLz5fPyuOjt_e3p8dFZZVatceUmoSCmL2GK3VBK6rlPoRYNY-7ZFqZwWS6gbLdtaUqsbUA3qzvkaARp5UDy_7jvFkedJ2WxCcjysHfbDGRRKaRRav2b69C96Me7iwNOxErJeConit1rZnkwY_Jijdfum5ojfUUuQe1XNqBUNFG0_DuQDX9_yT2a8m8LW_IkOZxCvjjbBzXZ9cauATabLvLK7lMzpp4__Yd_PWhfHlDgQZophY-OVQTD7gJmfATMcMLbPbv6qTRwUH-3gQvpVIJTWGgSwe3nthugiJbLRrf_R9gd_Ntdo</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>SHARMIN, N</creator><creator>GABR, M. A</creator><general>NRC Research Press</general><general>National Research Council of Canada</general><general>Canadian Science Publishing NRC Research Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20121201</creationdate><title>Optimized prefabricated vertical wells for light nonaqueous phase liquid recovery</title><author>SHARMIN, N ; GABR, M. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a646t-f3e16e66a11b1d8630ddd61f29114fbb136c72804973b43eb7906917dcf410093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air circulation</topic><topic>air mass</topic><topic>contaminant transport</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Extraction processes</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Genetic algorithms</topic><topic>Geotechnology</topic><topic>groundwater</topic><topic>light nonaqueous phase liquids (LNAPL)</topic><topic>Liquid levels</topic><topic>liquide immiscible léger (LIL)</topic><topic>Liquids</topic><topic>Mathematical optimization</topic><topic>Matlab</topic><topic>modeling</topic><topic>Nonaqueous phase liquids</topic><topic>Objective function</topic><topic>optimisation</topic><topic>Optimization</topic><topic>Permeability</topic><topic>perméabilité</topic><topic>Pollution, environment geology</topic><topic>Properties</topic><topic>puits préfabriqués</topic><topic>remediation technology</topic><topic>Saturation</topic><topic>subsurface</topic><topic>transport de contaminants</topic><topic>vacuum</topic><topic>Vapor phases</topic><topic>Water levels</topic><topic>Wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHARMIN, N</creatorcontrib><creatorcontrib>GABR, M. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHARMIN, N</au><au>GABR, M. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized prefabricated vertical wells for light nonaqueous phase liquid recovery</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>49</volume><issue>12</issue><spage>1434</spage><epage>1443</epage><pages>1434-1443</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><coden>CGJOAH</coden><abstract>Work presented herein examines optimization of prefabricated vertical well (PVW) performance during the extraction of light nonaqueous phase liquids (LNAPLs) in liquid and vapor phases in terms of lowering liquid level for promotion of vapor phase extraction, the magnitude of the vacuum head, and the spatial spacing of the PVWs. MATLAB’s genetic algorithm toolbox is linked to BIOSLURP (a multiphase transport finite element program) to achieve specific objectives with respect to time, vacuum level, or PVW spatial location. The optimization process is set up to control the decision variables (input to the BIOSLURP), on the basis of the objective function, defined as: (i) optimum time for lowering water level in view of impact of the residual saturation on free phase extraction processes; (ii) the magnitude of vacuum level for maximum vapor phase mass extraction and time at which air circulation should be adopted based on liquid level within the subsurface; and (iii) the efficient spatial placement of PVWs to maximize the free LNAPL extraction. Results indicated that a higher water saturation (wetting fluid) leads to lower LNAPL (nonwetting fluid) relative permeability and therefore prolonged time to lower the liquid level. Within the range of vacuum levels achieved in the field, there is an optimized vacuum level, which leads to highest extraction rate in the gas phase. Analysis included the feasibility of optimizing PVWs spacing and the illustrated process serves as a guidance approach to specify operating parameters.</abstract><cop>Ottawa, ON</cop><pub>NRC Research Press</pub><doi>10.1139/t2012-097</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-3674 |
ispartof | Canadian geotechnical journal, 2012-12, Vol.49 (12), p.1434-1443 |
issn | 0008-3674 1208-6010 |
language | eng |
recordid | cdi_pascalfrancis_primary_26777020 |
source | NRC Research Press; Alma/SFX Local Collection |
subjects | Air circulation air mass contaminant transport Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Extraction Extraction processes Finite element method Fluid flow Genetic algorithms Geotechnology groundwater light nonaqueous phase liquids (LNAPL) Liquid levels liquide immiscible léger (LIL) Liquids Mathematical optimization Matlab modeling Nonaqueous phase liquids Objective function optimisation Optimization Permeability perméabilité Pollution, environment geology Properties puits préfabriqués remediation technology Saturation subsurface transport de contaminants vacuum Vapor phases Water levels Wells |
title | Optimized prefabricated vertical wells for light nonaqueous phase liquid recovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20prefabricated%20vertical%20wells%20for%20light%20nonaqueous%20phase%20liquid%20recovery&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=SHARMIN,%20N&rft.date=2012-12-01&rft.volume=49&rft.issue=12&rft.spage=1434&rft.epage=1443&rft.pages=1434-1443&rft.issn=0008-3674&rft.eissn=1208-6010&rft.coden=CGJOAH&rft_id=info:doi/10.1139/t2012-097&rft_dat=%3Cgale_pasca%3EA312173032%3C/gale_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1223482312&rft_id=info:pmid/&rft_galeid=A312173032&rfr_iscdi=true |