Thermoelectric properties of armchair and zigzag silicene nanoribbons
Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. It is found that SiNRs are structurally stable if the edge atoms are passivated by h...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2012-10, Vol.14 (39), p.13588-13593 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13593 |
---|---|
container_issue | 39 |
container_start_page | 13588 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 14 |
creator | Pan, L Liu, H. J Tan, X. J Lv, H. Y Shi, J Tang, X. F Zheng, G |
description | Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. It is found that SiNRs are structurally stable if the edge atoms are passivated by hydrogen, and those with armchair edges usually exhibit much better thermoelectric performance than their zigzag counterparts. The room temperature
ZT
value of armchair SiNRs shows a width-dependent oscillating decay, while it decreases slowly with increasing ribbon width for the zigzag SiNRs. In addition, there is a strong temperature dependence of the thermoelectric performance of these SiNRs. Our theoretical calculations indicate that by optimizing the doping level and applied temperature, the
ZT
value of SiNRs could be enhanced to as high as 4.9 which suggests their very appealing thermoelectric applications.
Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. |
doi_str_mv | 10.1039/c2cp42645e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_26460398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1069206881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-b9a72a42f400152a82e4671fc2e3dde5c9d18347ab46eb56789dd0e65e59d7eb3</originalsourceid><addsrcrecordid>eNqF0EtLAzEUBeAgiq3VjXtlXAgijOY9k6WU-oCCm7oeMsmdNjIvk3Zhf70pre1OVzdwP04uB6FLgh8IZurRUNNzKrmAIzQkXLJU4Zwf79-ZHKCzED4xxkQQdooGlCopiJBDNJktwDcd1GCW3pmk910PfukgJF2VaN-YhXY-0a1N1m6-1vMkuNoZaCFpddt5V5ZdG87RSaXrABe7OUIfz5PZ-DWdvr-8jZ-mqRFYLNNS6YxqTiu-uYTqnAKXGakMBWYtCKMsyRnPdMkllEJmubIWgxQglM2gZCN0t82NZ36tICyLxgUDda1b6FahIDGNMSYF_Z9iqSiWeU4ivd9S47sQPFRF712j_XdExabh4tBwxNe73FXZgN3T30ojuN0BHYyuK69b48LBSS5jZB7dzdb5YPbbw0dFb6torv4y7AffG5ib</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069206881</pqid></control><display><type>article</type><title>Thermoelectric properties of armchair and zigzag silicene nanoribbons</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Pan, L ; Liu, H. J ; Tan, X. J ; Lv, H. Y ; Shi, J ; Tang, X. F ; Zheng, G</creator><creatorcontrib>Pan, L ; Liu, H. J ; Tan, X. J ; Lv, H. Y ; Shi, J ; Tang, X. F ; Zheng, G</creatorcontrib><description>Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. It is found that SiNRs are structurally stable if the edge atoms are passivated by hydrogen, and those with armchair edges usually exhibit much better thermoelectric performance than their zigzag counterparts. The room temperature
ZT
value of armchair SiNRs shows a width-dependent oscillating decay, while it decreases slowly with increasing ribbon width for the zigzag SiNRs. In addition, there is a strong temperature dependence of the thermoelectric performance of these SiNRs. Our theoretical calculations indicate that by optimizing the doping level and applied temperature, the
ZT
value of SiNRs could be enhanced to as high as 4.9 which suggests their very appealing thermoelectric applications.
Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp42645e</identifier><identifier>PMID: 22965156</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chairs ; Chemistry ; Doping ; Exact sciences and technology ; General and physical chemistry ; Molecular dynamics ; Nanocomposites ; Nanomaterials ; Nanostructure ; Ribbons ; Thermoelectricity</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-10, Vol.14 (39), p.13588-13593</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-b9a72a42f400152a82e4671fc2e3dde5c9d18347ab46eb56789dd0e65e59d7eb3</citedby><cites>FETCH-LOGICAL-c505t-b9a72a42f400152a82e4671fc2e3dde5c9d18347ab46eb56789dd0e65e59d7eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26460398$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22965156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, L</creatorcontrib><creatorcontrib>Liu, H. J</creatorcontrib><creatorcontrib>Tan, X. J</creatorcontrib><creatorcontrib>Lv, H. Y</creatorcontrib><creatorcontrib>Shi, J</creatorcontrib><creatorcontrib>Tang, X. F</creatorcontrib><creatorcontrib>Zheng, G</creatorcontrib><title>Thermoelectric properties of armchair and zigzag silicene nanoribbons</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. It is found that SiNRs are structurally stable if the edge atoms are passivated by hydrogen, and those with armchair edges usually exhibit much better thermoelectric performance than their zigzag counterparts. The room temperature
ZT
value of armchair SiNRs shows a width-dependent oscillating decay, while it decreases slowly with increasing ribbon width for the zigzag SiNRs. In addition, there is a strong temperature dependence of the thermoelectric performance of these SiNRs. Our theoretical calculations indicate that by optimizing the doping level and applied temperature, the
ZT
value of SiNRs could be enhanced to as high as 4.9 which suggests their very appealing thermoelectric applications.
Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials.</description><subject>Chairs</subject><subject>Chemistry</subject><subject>Doping</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Ribbons</subject><subject>Thermoelectricity</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLAzEUBeAgiq3VjXtlXAgijOY9k6WU-oCCm7oeMsmdNjIvk3Zhf70pre1OVzdwP04uB6FLgh8IZurRUNNzKrmAIzQkXLJU4Zwf79-ZHKCzED4xxkQQdooGlCopiJBDNJktwDcd1GCW3pmk910PfukgJF2VaN-YhXY-0a1N1m6-1vMkuNoZaCFpddt5V5ZdG87RSaXrABe7OUIfz5PZ-DWdvr-8jZ-mqRFYLNNS6YxqTiu-uYTqnAKXGakMBWYtCKMsyRnPdMkllEJmubIWgxQglM2gZCN0t82NZ36tICyLxgUDda1b6FahIDGNMSYF_Z9iqSiWeU4ivd9S47sQPFRF712j_XdExabh4tBwxNe73FXZgN3T30ojuN0BHYyuK69b48LBSS5jZB7dzdb5YPbbw0dFb6torv4y7AffG5ib</recordid><startdate>20121021</startdate><enddate>20121021</enddate><creator>Pan, L</creator><creator>Liu, H. J</creator><creator>Tan, X. J</creator><creator>Lv, H. Y</creator><creator>Shi, J</creator><creator>Tang, X. F</creator><creator>Zheng, G</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20121021</creationdate><title>Thermoelectric properties of armchair and zigzag silicene nanoribbons</title><author>Pan, L ; Liu, H. J ; Tan, X. J ; Lv, H. Y ; Shi, J ; Tang, X. F ; Zheng, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-b9a72a42f400152a82e4671fc2e3dde5c9d18347ab46eb56789dd0e65e59d7eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chairs</topic><topic>Chemistry</topic><topic>Doping</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Ribbons</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, L</creatorcontrib><creatorcontrib>Liu, H. J</creatorcontrib><creatorcontrib>Tan, X. J</creatorcontrib><creatorcontrib>Lv, H. Y</creatorcontrib><creatorcontrib>Shi, J</creatorcontrib><creatorcontrib>Tang, X. F</creatorcontrib><creatorcontrib>Zheng, G</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, L</au><au>Liu, H. J</au><au>Tan, X. J</au><au>Lv, H. Y</au><au>Shi, J</au><au>Tang, X. F</au><au>Zheng, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of armchair and zigzag silicene nanoribbons</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-10-21</date><risdate>2012</risdate><volume>14</volume><issue>39</issue><spage>13588</spage><epage>13593</epage><pages>13588-13593</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. It is found that SiNRs are structurally stable if the edge atoms are passivated by hydrogen, and those with armchair edges usually exhibit much better thermoelectric performance than their zigzag counterparts. The room temperature
ZT
value of armchair SiNRs shows a width-dependent oscillating decay, while it decreases slowly with increasing ribbon width for the zigzag SiNRs. In addition, there is a strong temperature dependence of the thermoelectric performance of these SiNRs. Our theoretical calculations indicate that by optimizing the doping level and applied temperature, the
ZT
value of SiNRs could be enhanced to as high as 4.9 which suggests their very appealing thermoelectric applications.
Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22965156</pmid><doi>10.1039/c2cp42645e</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2012-10, Vol.14 (39), p.13588-13593 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pascalfrancis_primary_26460398 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chairs Chemistry Doping Exact sciences and technology General and physical chemistry Molecular dynamics Nanocomposites Nanomaterials Nanostructure Ribbons Thermoelectricity |
title | Thermoelectric properties of armchair and zigzag silicene nanoribbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20armchair%20and%20zigzag%20silicene%20nanoribbons&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Pan,%20L&rft.date=2012-10-21&rft.volume=14&rft.issue=39&rft.spage=13588&rft.epage=13593&rft.pages=13588-13593&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp42645e&rft_dat=%3Cproquest_pasca%3E1069206881%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069206881&rft_id=info:pmid/22965156&rfr_iscdi=true |