Thermoelectric properties of armchair and zigzag silicene nanoribbons

Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. It is found that SiNRs are structurally stable if the edge atoms are passivated by h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2012-10, Vol.14 (39), p.13588-13593
Hauptverfasser: Pan, L, Liu, H. J, Tan, X. J, Lv, H. Y, Shi, J, Tang, X. F, Zheng, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13593
container_issue 39
container_start_page 13588
container_title Physical chemistry chemical physics : PCCP
container_volume 14
creator Pan, L
Liu, H. J
Tan, X. J
Lv, H. Y
Shi, J
Tang, X. F
Zheng, G
description Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. It is found that SiNRs are structurally stable if the edge atoms are passivated by hydrogen, and those with armchair edges usually exhibit much better thermoelectric performance than their zigzag counterparts. The room temperature ZT value of armchair SiNRs shows a width-dependent oscillating decay, while it decreases slowly with increasing ribbon width for the zigzag SiNRs. In addition, there is a strong temperature dependence of the thermoelectric performance of these SiNRs. Our theoretical calculations indicate that by optimizing the doping level and applied temperature, the ZT value of SiNRs could be enhanced to as high as 4.9 which suggests their very appealing thermoelectric applications. Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials.
doi_str_mv 10.1039/c2cp42645e
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_26460398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1069206881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-b9a72a42f400152a82e4671fc2e3dde5c9d18347ab46eb56789dd0e65e59d7eb3</originalsourceid><addsrcrecordid>eNqF0EtLAzEUBeAgiq3VjXtlXAgijOY9k6WU-oCCm7oeMsmdNjIvk3Zhf70pre1OVzdwP04uB6FLgh8IZurRUNNzKrmAIzQkXLJU4Zwf79-ZHKCzED4xxkQQdooGlCopiJBDNJktwDcd1GCW3pmk910PfukgJF2VaN-YhXY-0a1N1m6-1vMkuNoZaCFpddt5V5ZdG87RSaXrABe7OUIfz5PZ-DWdvr-8jZ-mqRFYLNNS6YxqTiu-uYTqnAKXGakMBWYtCKMsyRnPdMkllEJmubIWgxQglM2gZCN0t82NZ36tICyLxgUDda1b6FahIDGNMSYF_Z9iqSiWeU4ivd9S47sQPFRF712j_XdExabh4tBwxNe73FXZgN3T30ojuN0BHYyuK69b48LBSS5jZB7dzdb5YPbbw0dFb6torv4y7AffG5ib</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069206881</pqid></control><display><type>article</type><title>Thermoelectric properties of armchair and zigzag silicene nanoribbons</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Pan, L ; Liu, H. J ; Tan, X. J ; Lv, H. Y ; Shi, J ; Tang, X. F ; Zheng, G</creator><creatorcontrib>Pan, L ; Liu, H. J ; Tan, X. J ; Lv, H. Y ; Shi, J ; Tang, X. F ; Zheng, G</creatorcontrib><description>Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. It is found that SiNRs are structurally stable if the edge atoms are passivated by hydrogen, and those with armchair edges usually exhibit much better thermoelectric performance than their zigzag counterparts. The room temperature ZT value of armchair SiNRs shows a width-dependent oscillating decay, while it decreases slowly with increasing ribbon width for the zigzag SiNRs. In addition, there is a strong temperature dependence of the thermoelectric performance of these SiNRs. Our theoretical calculations indicate that by optimizing the doping level and applied temperature, the ZT value of SiNRs could be enhanced to as high as 4.9 which suggests their very appealing thermoelectric applications. Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp42645e</identifier><identifier>PMID: 22965156</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chairs ; Chemistry ; Doping ; Exact sciences and technology ; General and physical chemistry ; Molecular dynamics ; Nanocomposites ; Nanomaterials ; Nanostructure ; Ribbons ; Thermoelectricity</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-10, Vol.14 (39), p.13588-13593</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-b9a72a42f400152a82e4671fc2e3dde5c9d18347ab46eb56789dd0e65e59d7eb3</citedby><cites>FETCH-LOGICAL-c505t-b9a72a42f400152a82e4671fc2e3dde5c9d18347ab46eb56789dd0e65e59d7eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26460398$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22965156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, L</creatorcontrib><creatorcontrib>Liu, H. J</creatorcontrib><creatorcontrib>Tan, X. J</creatorcontrib><creatorcontrib>Lv, H. Y</creatorcontrib><creatorcontrib>Shi, J</creatorcontrib><creatorcontrib>Tang, X. F</creatorcontrib><creatorcontrib>Zheng, G</creatorcontrib><title>Thermoelectric properties of armchair and zigzag silicene nanoribbons</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. It is found that SiNRs are structurally stable if the edge atoms are passivated by hydrogen, and those with armchair edges usually exhibit much better thermoelectric performance than their zigzag counterparts. The room temperature ZT value of armchair SiNRs shows a width-dependent oscillating decay, while it decreases slowly with increasing ribbon width for the zigzag SiNRs. In addition, there is a strong temperature dependence of the thermoelectric performance of these SiNRs. Our theoretical calculations indicate that by optimizing the doping level and applied temperature, the ZT value of SiNRs could be enhanced to as high as 4.9 which suggests their very appealing thermoelectric applications. Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials.</description><subject>Chairs</subject><subject>Chemistry</subject><subject>Doping</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Ribbons</subject><subject>Thermoelectricity</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLAzEUBeAgiq3VjXtlXAgijOY9k6WU-oCCm7oeMsmdNjIvk3Zhf70pre1OVzdwP04uB6FLgh8IZurRUNNzKrmAIzQkXLJU4Zwf79-ZHKCzED4xxkQQdooGlCopiJBDNJktwDcd1GCW3pmk910PfukgJF2VaN-YhXY-0a1N1m6-1vMkuNoZaCFpddt5V5ZdG87RSaXrABe7OUIfz5PZ-DWdvr-8jZ-mqRFYLNNS6YxqTiu-uYTqnAKXGakMBWYtCKMsyRnPdMkllEJmubIWgxQglM2gZCN0t82NZ36tICyLxgUDda1b6FahIDGNMSYF_Z9iqSiWeU4ivd9S47sQPFRF712j_XdExabh4tBwxNe73FXZgN3T30ojuN0BHYyuK69b48LBSS5jZB7dzdb5YPbbw0dFb6torv4y7AffG5ib</recordid><startdate>20121021</startdate><enddate>20121021</enddate><creator>Pan, L</creator><creator>Liu, H. J</creator><creator>Tan, X. J</creator><creator>Lv, H. Y</creator><creator>Shi, J</creator><creator>Tang, X. F</creator><creator>Zheng, G</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20121021</creationdate><title>Thermoelectric properties of armchair and zigzag silicene nanoribbons</title><author>Pan, L ; Liu, H. J ; Tan, X. J ; Lv, H. Y ; Shi, J ; Tang, X. F ; Zheng, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-b9a72a42f400152a82e4671fc2e3dde5c9d18347ab46eb56789dd0e65e59d7eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chairs</topic><topic>Chemistry</topic><topic>Doping</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Ribbons</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, L</creatorcontrib><creatorcontrib>Liu, H. J</creatorcontrib><creatorcontrib>Tan, X. J</creatorcontrib><creatorcontrib>Lv, H. Y</creatorcontrib><creatorcontrib>Shi, J</creatorcontrib><creatorcontrib>Tang, X. F</creatorcontrib><creatorcontrib>Zheng, G</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, L</au><au>Liu, H. J</au><au>Tan, X. J</au><au>Lv, H. Y</au><au>Shi, J</au><au>Tang, X. F</au><au>Zheng, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of armchair and zigzag silicene nanoribbons</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-10-21</date><risdate>2012</risdate><volume>14</volume><issue>39</issue><spage>13588</spage><epage>13593</epage><pages>13588-13593</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials. It is found that SiNRs are structurally stable if the edge atoms are passivated by hydrogen, and those with armchair edges usually exhibit much better thermoelectric performance than their zigzag counterparts. The room temperature ZT value of armchair SiNRs shows a width-dependent oscillating decay, while it decreases slowly with increasing ribbon width for the zigzag SiNRs. In addition, there is a strong temperature dependence of the thermoelectric performance of these SiNRs. Our theoretical calculations indicate that by optimizing the doping level and applied temperature, the ZT value of SiNRs could be enhanced to as high as 4.9 which suggests their very appealing thermoelectric applications. Using the nonequilibrium Green's function method and nonequilibrium molecular dynamics simulations, we discuss the possibility of using silicene nanoribbons (SiNRs) as high performance thermoelectric materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22965156</pmid><doi>10.1039/c2cp42645e</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2012-10, Vol.14 (39), p.13588-13593
issn 1463-9076
1463-9084
language eng
recordid cdi_pascalfrancis_primary_26460398
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chairs
Chemistry
Doping
Exact sciences and technology
General and physical chemistry
Molecular dynamics
Nanocomposites
Nanomaterials
Nanostructure
Ribbons
Thermoelectricity
title Thermoelectric properties of armchair and zigzag silicene nanoribbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20armchair%20and%20zigzag%20silicene%20nanoribbons&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Pan,%20L&rft.date=2012-10-21&rft.volume=14&rft.issue=39&rft.spage=13588&rft.epage=13593&rft.pages=13588-13593&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp42645e&rft_dat=%3Cproquest_pasca%3E1069206881%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069206881&rft_id=info:pmid/22965156&rfr_iscdi=true