Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework

This paper presents an output feedback nonlinear model-based control approach for optimal operation of industrial batch crystallizers. A full population balance model is utilized as the cornerstone of the control approach. The modeling framework allows us to describe the dynamics of a wide range of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2012-09, Vol.20 (5), p.1188-1201
Hauptverfasser: Mesbah, A., Nagy, Z. K., Huesman, A. E. M., Kramer, H. J. M., Van den Hof, P. M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1201
container_issue 5
container_start_page 1188
container_title IEEE transactions on control systems technology
container_volume 20
creator Mesbah, A.
Nagy, Z. K.
Huesman, A. E. M.
Kramer, H. J. M.
Van den Hof, P. M. J.
description This paper presents an output feedback nonlinear model-based control approach for optimal operation of industrial batch crystallizers. A full population balance model is utilized as the cornerstone of the control approach. The modeling framework allows us to describe the dynamics of a wide range of industrial batch crystallizers. In addition, it facilitates the use of performance objectives expressed in terms of crystal size distribution. The core component of the control approach is an optimal control problem, which is solved by the direct multiple shooting strategy. To ensure the effectiveness of the optimal operating policies in the presence of model imperfections and process uncertainties, the model predictions are adapted on the basis of online measurements using a moving horizon state estimator. The nonlinear model-based control approach is applied to a semi-industrial crystallizer. The simulation results suggest that the feasibility of real-time control of the crystallizer is largely dependent on the discretization coarseness of the population balance model. The control performance can be greatly deteriorated due to inadequate discretization of the population balance equation. This results from structural model imperfection, which is effectively compensated for by using the online measurements to confer an integrating action to the dynamic optimizer. The real-time feasibility of the output feedback control approach is experimentally corroborated for fed-batch evaporative crystallization of ammonium sulphate. It is observed that the use of the control approach leads to a substantial increase, i.e., up to 15%, in the batch crystal content as the product quality is sustained.
doi_str_mv 10.1109/TCST.2011.2160945
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_26324388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5985494</ieee_id><sourcerecordid>2702242151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-deaa5c0d96fe70a78f2906641dbad811392d7246930fb06fbe9ba311ff17deaf3</originalsourceid><addsrcrecordid>eNpdkU9r3DAQxU1oIekmHyD0YiiFXrzRSJZsHRuTf5A0geyezaw9apVqra1kU9JPX5ldcshpBub3Ho95WXYObAnA9MWqeV4tOQNYclBMl_IoOwEp64LVSn5IO1OiUFKo4-xTjC-MQSl5dZLFH35wdiAM-YPvyRWXGKnPGz-MwbvcmxzzZ9ra4m7opzgGiy6_xLH7lTfhNY7onP1HIV9HO_xM6JPfTQ5H64dEORw62tvO1-uAW_rrw-_T7KNBF-nsMBfZ-vpq1dwW9483d833-6ITUo1FT4iyY71WhiqGVW24ZkqV0G-wrwGE5n3FS6UFMxumzIb0BgWAMVAlrRGL7Nvedxf8n4ni2G5t7MilXOSn2AITtQDOpUrol3foi5_CkNIligvQADBTsKe64GMMZNpdsFsMrwlq5xrauYZ2rqE91JA0Xw_OGDt0JqSn2Pgm5ErwUtR14j7vOUtEb2epa1nqUvwHYRyRGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023191116</pqid></control><display><type>article</type><title>Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Mesbah, A. ; Nagy, Z. K. ; Huesman, A. E. M. ; Kramer, H. J. M. ; Van den Hof, P. M. J.</creator><creatorcontrib>Mesbah, A. ; Nagy, Z. K. ; Huesman, A. E. M. ; Kramer, H. J. M. ; Van den Hof, P. M. J.</creatorcontrib><description>This paper presents an output feedback nonlinear model-based control approach for optimal operation of industrial batch crystallizers. A full population balance model is utilized as the cornerstone of the control approach. The modeling framework allows us to describe the dynamics of a wide range of industrial batch crystallizers. In addition, it facilitates the use of performance objectives expressed in terms of crystal size distribution. The core component of the control approach is an optimal control problem, which is solved by the direct multiple shooting strategy. To ensure the effectiveness of the optimal operating policies in the presence of model imperfections and process uncertainties, the model predictions are adapted on the basis of online measurements using a moving horizon state estimator. The nonlinear model-based control approach is applied to a semi-industrial crystallizer. The simulation results suggest that the feasibility of real-time control of the crystallizer is largely dependent on the discretization coarseness of the population balance model. The control performance can be greatly deteriorated due to inadequate discretization of the population balance equation. This results from structural model imperfection, which is effectively compensated for by using the online measurements to confer an integrating action to the dynamic optimizer. The real-time feasibility of the output feedback control approach is experimentally corroborated for fed-batch evaporative crystallization of ammonium sulphate. It is observed that the use of the control approach leads to a substantial increase, i.e., up to 15%, in the batch crystal content as the product quality is sustained.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2011.2160945</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptative systems ; Applied sciences ; Batch crystallization ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Crystallization ; Crystallizers ; Crystals ; Defects ; direct multiple shooting strategy ; Discretization ; dynamic optimization ; Equations ; Exact sciences and technology ; Feasibility ; Mathematical model ; Mathematical models ; Modelling and identification ; moving horizon estimation ; Nonlinearity ; Optimal control ; population balance equation (PBE) ; Population balance models ; Process control ; Process control. Computer integrated manufacturing ; Real time systems ; real-time control ; Studies</subject><ispartof>IEEE transactions on control systems technology, 2012-09, Vol.20 (5), p.1188-1201</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-deaa5c0d96fe70a78f2906641dbad811392d7246930fb06fbe9ba311ff17deaf3</citedby><cites>FETCH-LOGICAL-c356t-deaa5c0d96fe70a78f2906641dbad811392d7246930fb06fbe9ba311ff17deaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5985494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5985494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26324388$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mesbah, A.</creatorcontrib><creatorcontrib>Nagy, Z. K.</creatorcontrib><creatorcontrib>Huesman, A. E. M.</creatorcontrib><creatorcontrib>Kramer, H. J. M.</creatorcontrib><creatorcontrib>Van den Hof, P. M. J.</creatorcontrib><title>Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper presents an output feedback nonlinear model-based control approach for optimal operation of industrial batch crystallizers. A full population balance model is utilized as the cornerstone of the control approach. The modeling framework allows us to describe the dynamics of a wide range of industrial batch crystallizers. In addition, it facilitates the use of performance objectives expressed in terms of crystal size distribution. The core component of the control approach is an optimal control problem, which is solved by the direct multiple shooting strategy. To ensure the effectiveness of the optimal operating policies in the presence of model imperfections and process uncertainties, the model predictions are adapted on the basis of online measurements using a moving horizon state estimator. The nonlinear model-based control approach is applied to a semi-industrial crystallizer. The simulation results suggest that the feasibility of real-time control of the crystallizer is largely dependent on the discretization coarseness of the population balance model. The control performance can be greatly deteriorated due to inadequate discretization of the population balance equation. This results from structural model imperfection, which is effectively compensated for by using the online measurements to confer an integrating action to the dynamic optimizer. The real-time feasibility of the output feedback control approach is experimentally corroborated for fed-batch evaporative crystallization of ammonium sulphate. It is observed that the use of the control approach leads to a substantial increase, i.e., up to 15%, in the batch crystal content as the product quality is sustained.</description><subject>Adaptative systems</subject><subject>Applied sciences</subject><subject>Batch crystallization</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Crystallization</subject><subject>Crystallizers</subject><subject>Crystals</subject><subject>Defects</subject><subject>direct multiple shooting strategy</subject><subject>Discretization</subject><subject>dynamic optimization</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Feasibility</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Modelling and identification</subject><subject>moving horizon estimation</subject><subject>Nonlinearity</subject><subject>Optimal control</subject><subject>population balance equation (PBE)</subject><subject>Population balance models</subject><subject>Process control</subject><subject>Process control. Computer integrated manufacturing</subject><subject>Real time systems</subject><subject>real-time control</subject><subject>Studies</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU9r3DAQxU1oIekmHyD0YiiFXrzRSJZsHRuTf5A0geyezaw9apVqra1kU9JPX5ldcshpBub3Ho95WXYObAnA9MWqeV4tOQNYclBMl_IoOwEp64LVSn5IO1OiUFKo4-xTjC-MQSl5dZLFH35wdiAM-YPvyRWXGKnPGz-MwbvcmxzzZ9ra4m7opzgGiy6_xLH7lTfhNY7onP1HIV9HO_xM6JPfTQ5H64dEORw62tvO1-uAW_rrw-_T7KNBF-nsMBfZ-vpq1dwW9483d833-6ITUo1FT4iyY71WhiqGVW24ZkqV0G-wrwGE5n3FS6UFMxumzIb0BgWAMVAlrRGL7Nvedxf8n4ni2G5t7MilXOSn2AITtQDOpUrol3foi5_CkNIligvQADBTsKe64GMMZNpdsFsMrwlq5xrauYZ2rqE91JA0Xw_OGDt0JqSn2Pgm5ErwUtR14j7vOUtEb2epa1nqUvwHYRyRGA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Mesbah, A.</creator><creator>Nagy, Z. K.</creator><creator>Huesman, A. E. M.</creator><creator>Kramer, H. J. M.</creator><creator>Van den Hof, P. M. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20120901</creationdate><title>Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework</title><author>Mesbah, A. ; Nagy, Z. K. ; Huesman, A. E. M. ; Kramer, H. J. M. ; Van den Hof, P. M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-deaa5c0d96fe70a78f2906641dbad811392d7246930fb06fbe9ba311ff17deaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptative systems</topic><topic>Applied sciences</topic><topic>Batch crystallization</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Crystallization</topic><topic>Crystallizers</topic><topic>Crystals</topic><topic>Defects</topic><topic>direct multiple shooting strategy</topic><topic>Discretization</topic><topic>dynamic optimization</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Feasibility</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Modelling and identification</topic><topic>moving horizon estimation</topic><topic>Nonlinearity</topic><topic>Optimal control</topic><topic>population balance equation (PBE)</topic><topic>Population balance models</topic><topic>Process control</topic><topic>Process control. Computer integrated manufacturing</topic><topic>Real time systems</topic><topic>real-time control</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesbah, A.</creatorcontrib><creatorcontrib>Nagy, Z. K.</creatorcontrib><creatorcontrib>Huesman, A. E. M.</creatorcontrib><creatorcontrib>Kramer, H. J. M.</creatorcontrib><creatorcontrib>Van den Hof, P. M. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mesbah, A.</au><au>Nagy, Z. K.</au><au>Huesman, A. E. M.</au><au>Kramer, H. J. M.</au><au>Van den Hof, P. M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>20</volume><issue>5</issue><spage>1188</spage><epage>1201</epage><pages>1188-1201</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper presents an output feedback nonlinear model-based control approach for optimal operation of industrial batch crystallizers. A full population balance model is utilized as the cornerstone of the control approach. The modeling framework allows us to describe the dynamics of a wide range of industrial batch crystallizers. In addition, it facilitates the use of performance objectives expressed in terms of crystal size distribution. The core component of the control approach is an optimal control problem, which is solved by the direct multiple shooting strategy. To ensure the effectiveness of the optimal operating policies in the presence of model imperfections and process uncertainties, the model predictions are adapted on the basis of online measurements using a moving horizon state estimator. The nonlinear model-based control approach is applied to a semi-industrial crystallizer. The simulation results suggest that the feasibility of real-time control of the crystallizer is largely dependent on the discretization coarseness of the population balance model. The control performance can be greatly deteriorated due to inadequate discretization of the population balance equation. This results from structural model imperfection, which is effectively compensated for by using the online measurements to confer an integrating action to the dynamic optimizer. The real-time feasibility of the output feedback control approach is experimentally corroborated for fed-batch evaporative crystallization of ammonium sulphate. It is observed that the use of the control approach leads to a substantial increase, i.e., up to 15%, in the batch crystal content as the product quality is sustained.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2011.2160945</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2012-09, Vol.20 (5), p.1188-1201
issn 1063-6536
1558-0865
language eng
recordid cdi_pascalfrancis_primary_26324388
source IEEE Electronic Library (IEL)
subjects Adaptative systems
Applied sciences
Batch crystallization
Computer science
control theory
systems
Control systems
Control theory. Systems
Crystallization
Crystallizers
Crystals
Defects
direct multiple shooting strategy
Discretization
dynamic optimization
Equations
Exact sciences and technology
Feasibility
Mathematical model
Mathematical models
Modelling and identification
moving horizon estimation
Nonlinearity
Optimal control
population balance equation (PBE)
Population balance models
Process control
Process control. Computer integrated manufacturing
Real time systems
real-time control
Studies
title Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Model-Based%20Control%20of%20a%20Semi-Industrial%20Batch%20Crystallizer%20Using%20a%20Population%20Balance%20Modeling%20Framework&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Mesbah,%20A.&rft.date=2012-09-01&rft.volume=20&rft.issue=5&rft.spage=1188&rft.epage=1201&rft.pages=1188-1201&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2011.2160945&rft_dat=%3Cproquest_RIE%3E2702242151%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023191116&rft_id=info:pmid/&rft_ieee_id=5985494&rfr_iscdi=true