Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework
This paper presents an output feedback nonlinear model-based control approach for optimal operation of industrial batch crystallizers. A full population balance model is utilized as the cornerstone of the control approach. The modeling framework allows us to describe the dynamics of a wide range of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2012-09, Vol.20 (5), p.1188-1201 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1201 |
---|---|
container_issue | 5 |
container_start_page | 1188 |
container_title | IEEE transactions on control systems technology |
container_volume | 20 |
creator | Mesbah, A. Nagy, Z. K. Huesman, A. E. M. Kramer, H. J. M. Van den Hof, P. M. J. |
description | This paper presents an output feedback nonlinear model-based control approach for optimal operation of industrial batch crystallizers. A full population balance model is utilized as the cornerstone of the control approach. The modeling framework allows us to describe the dynamics of a wide range of industrial batch crystallizers. In addition, it facilitates the use of performance objectives expressed in terms of crystal size distribution. The core component of the control approach is an optimal control problem, which is solved by the direct multiple shooting strategy. To ensure the effectiveness of the optimal operating policies in the presence of model imperfections and process uncertainties, the model predictions are adapted on the basis of online measurements using a moving horizon state estimator. The nonlinear model-based control approach is applied to a semi-industrial crystallizer. The simulation results suggest that the feasibility of real-time control of the crystallizer is largely dependent on the discretization coarseness of the population balance model. The control performance can be greatly deteriorated due to inadequate discretization of the population balance equation. This results from structural model imperfection, which is effectively compensated for by using the online measurements to confer an integrating action to the dynamic optimizer. The real-time feasibility of the output feedback control approach is experimentally corroborated for fed-batch evaporative crystallization of ammonium sulphate. It is observed that the use of the control approach leads to a substantial increase, i.e., up to 15%, in the batch crystal content as the product quality is sustained. |
doi_str_mv | 10.1109/TCST.2011.2160945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_26324388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5985494</ieee_id><sourcerecordid>2702242151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-deaa5c0d96fe70a78f2906641dbad811392d7246930fb06fbe9ba311ff17deaf3</originalsourceid><addsrcrecordid>eNpdkU9r3DAQxU1oIekmHyD0YiiFXrzRSJZsHRuTf5A0geyezaw9apVqra1kU9JPX5ldcshpBub3Ho95WXYObAnA9MWqeV4tOQNYclBMl_IoOwEp64LVSn5IO1OiUFKo4-xTjC-MQSl5dZLFH35wdiAM-YPvyRWXGKnPGz-MwbvcmxzzZ9ra4m7opzgGiy6_xLH7lTfhNY7onP1HIV9HO_xM6JPfTQ5H64dEORw62tvO1-uAW_rrw-_T7KNBF-nsMBfZ-vpq1dwW9483d833-6ITUo1FT4iyY71WhiqGVW24ZkqV0G-wrwGE5n3FS6UFMxumzIb0BgWAMVAlrRGL7Nvedxf8n4ni2G5t7MilXOSn2AITtQDOpUrol3foi5_CkNIligvQADBTsKe64GMMZNpdsFsMrwlq5xrauYZ2rqE91JA0Xw_OGDt0JqSn2Pgm5ErwUtR14j7vOUtEb2epa1nqUvwHYRyRGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023191116</pqid></control><display><type>article</type><title>Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Mesbah, A. ; Nagy, Z. K. ; Huesman, A. E. M. ; Kramer, H. J. M. ; Van den Hof, P. M. J.</creator><creatorcontrib>Mesbah, A. ; Nagy, Z. K. ; Huesman, A. E. M. ; Kramer, H. J. M. ; Van den Hof, P. M. J.</creatorcontrib><description>This paper presents an output feedback nonlinear model-based control approach for optimal operation of industrial batch crystallizers. A full population balance model is utilized as the cornerstone of the control approach. The modeling framework allows us to describe the dynamics of a wide range of industrial batch crystallizers. In addition, it facilitates the use of performance objectives expressed in terms of crystal size distribution. The core component of the control approach is an optimal control problem, which is solved by the direct multiple shooting strategy. To ensure the effectiveness of the optimal operating policies in the presence of model imperfections and process uncertainties, the model predictions are adapted on the basis of online measurements using a moving horizon state estimator. The nonlinear model-based control approach is applied to a semi-industrial crystallizer. The simulation results suggest that the feasibility of real-time control of the crystallizer is largely dependent on the discretization coarseness of the population balance model. The control performance can be greatly deteriorated due to inadequate discretization of the population balance equation. This results from structural model imperfection, which is effectively compensated for by using the online measurements to confer an integrating action to the dynamic optimizer. The real-time feasibility of the output feedback control approach is experimentally corroborated for fed-batch evaporative crystallization of ammonium sulphate. It is observed that the use of the control approach leads to a substantial increase, i.e., up to 15%, in the batch crystal content as the product quality is sustained.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2011.2160945</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptative systems ; Applied sciences ; Batch crystallization ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Crystallization ; Crystallizers ; Crystals ; Defects ; direct multiple shooting strategy ; Discretization ; dynamic optimization ; Equations ; Exact sciences and technology ; Feasibility ; Mathematical model ; Mathematical models ; Modelling and identification ; moving horizon estimation ; Nonlinearity ; Optimal control ; population balance equation (PBE) ; Population balance models ; Process control ; Process control. Computer integrated manufacturing ; Real time systems ; real-time control ; Studies</subject><ispartof>IEEE transactions on control systems technology, 2012-09, Vol.20 (5), p.1188-1201</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-deaa5c0d96fe70a78f2906641dbad811392d7246930fb06fbe9ba311ff17deaf3</citedby><cites>FETCH-LOGICAL-c356t-deaa5c0d96fe70a78f2906641dbad811392d7246930fb06fbe9ba311ff17deaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5985494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5985494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26324388$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mesbah, A.</creatorcontrib><creatorcontrib>Nagy, Z. K.</creatorcontrib><creatorcontrib>Huesman, A. E. M.</creatorcontrib><creatorcontrib>Kramer, H. J. M.</creatorcontrib><creatorcontrib>Van den Hof, P. M. J.</creatorcontrib><title>Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper presents an output feedback nonlinear model-based control approach for optimal operation of industrial batch crystallizers. A full population balance model is utilized as the cornerstone of the control approach. The modeling framework allows us to describe the dynamics of a wide range of industrial batch crystallizers. In addition, it facilitates the use of performance objectives expressed in terms of crystal size distribution. The core component of the control approach is an optimal control problem, which is solved by the direct multiple shooting strategy. To ensure the effectiveness of the optimal operating policies in the presence of model imperfections and process uncertainties, the model predictions are adapted on the basis of online measurements using a moving horizon state estimator. The nonlinear model-based control approach is applied to a semi-industrial crystallizer. The simulation results suggest that the feasibility of real-time control of the crystallizer is largely dependent on the discretization coarseness of the population balance model. The control performance can be greatly deteriorated due to inadequate discretization of the population balance equation. This results from structural model imperfection, which is effectively compensated for by using the online measurements to confer an integrating action to the dynamic optimizer. The real-time feasibility of the output feedback control approach is experimentally corroborated for fed-batch evaporative crystallization of ammonium sulphate. It is observed that the use of the control approach leads to a substantial increase, i.e., up to 15%, in the batch crystal content as the product quality is sustained.</description><subject>Adaptative systems</subject><subject>Applied sciences</subject><subject>Batch crystallization</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Crystallization</subject><subject>Crystallizers</subject><subject>Crystals</subject><subject>Defects</subject><subject>direct multiple shooting strategy</subject><subject>Discretization</subject><subject>dynamic optimization</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Feasibility</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Modelling and identification</subject><subject>moving horizon estimation</subject><subject>Nonlinearity</subject><subject>Optimal control</subject><subject>population balance equation (PBE)</subject><subject>Population balance models</subject><subject>Process control</subject><subject>Process control. Computer integrated manufacturing</subject><subject>Real time systems</subject><subject>real-time control</subject><subject>Studies</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU9r3DAQxU1oIekmHyD0YiiFXrzRSJZsHRuTf5A0geyezaw9apVqra1kU9JPX5ldcshpBub3Ho95WXYObAnA9MWqeV4tOQNYclBMl_IoOwEp64LVSn5IO1OiUFKo4-xTjC-MQSl5dZLFH35wdiAM-YPvyRWXGKnPGz-MwbvcmxzzZ9ra4m7opzgGiy6_xLH7lTfhNY7onP1HIV9HO_xM6JPfTQ5H64dEORw62tvO1-uAW_rrw-_T7KNBF-nsMBfZ-vpq1dwW9483d833-6ITUo1FT4iyY71WhiqGVW24ZkqV0G-wrwGE5n3FS6UFMxumzIb0BgWAMVAlrRGL7Nvedxf8n4ni2G5t7MilXOSn2AITtQDOpUrol3foi5_CkNIligvQADBTsKe64GMMZNpdsFsMrwlq5xrauYZ2rqE91JA0Xw_OGDt0JqSn2Pgm5ErwUtR14j7vOUtEb2epa1nqUvwHYRyRGA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Mesbah, A.</creator><creator>Nagy, Z. K.</creator><creator>Huesman, A. E. M.</creator><creator>Kramer, H. J. M.</creator><creator>Van den Hof, P. M. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20120901</creationdate><title>Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework</title><author>Mesbah, A. ; Nagy, Z. K. ; Huesman, A. E. M. ; Kramer, H. J. M. ; Van den Hof, P. M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-deaa5c0d96fe70a78f2906641dbad811392d7246930fb06fbe9ba311ff17deaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptative systems</topic><topic>Applied sciences</topic><topic>Batch crystallization</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Crystallization</topic><topic>Crystallizers</topic><topic>Crystals</topic><topic>Defects</topic><topic>direct multiple shooting strategy</topic><topic>Discretization</topic><topic>dynamic optimization</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Feasibility</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Modelling and identification</topic><topic>moving horizon estimation</topic><topic>Nonlinearity</topic><topic>Optimal control</topic><topic>population balance equation (PBE)</topic><topic>Population balance models</topic><topic>Process control</topic><topic>Process control. Computer integrated manufacturing</topic><topic>Real time systems</topic><topic>real-time control</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesbah, A.</creatorcontrib><creatorcontrib>Nagy, Z. K.</creatorcontrib><creatorcontrib>Huesman, A. E. M.</creatorcontrib><creatorcontrib>Kramer, H. J. M.</creatorcontrib><creatorcontrib>Van den Hof, P. M. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mesbah, A.</au><au>Nagy, Z. K.</au><au>Huesman, A. E. M.</au><au>Kramer, H. J. M.</au><au>Van den Hof, P. M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>20</volume><issue>5</issue><spage>1188</spage><epage>1201</epage><pages>1188-1201</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper presents an output feedback nonlinear model-based control approach for optimal operation of industrial batch crystallizers. A full population balance model is utilized as the cornerstone of the control approach. The modeling framework allows us to describe the dynamics of a wide range of industrial batch crystallizers. In addition, it facilitates the use of performance objectives expressed in terms of crystal size distribution. The core component of the control approach is an optimal control problem, which is solved by the direct multiple shooting strategy. To ensure the effectiveness of the optimal operating policies in the presence of model imperfections and process uncertainties, the model predictions are adapted on the basis of online measurements using a moving horizon state estimator. The nonlinear model-based control approach is applied to a semi-industrial crystallizer. The simulation results suggest that the feasibility of real-time control of the crystallizer is largely dependent on the discretization coarseness of the population balance model. The control performance can be greatly deteriorated due to inadequate discretization of the population balance equation. This results from structural model imperfection, which is effectively compensated for by using the online measurements to confer an integrating action to the dynamic optimizer. The real-time feasibility of the output feedback control approach is experimentally corroborated for fed-batch evaporative crystallization of ammonium sulphate. It is observed that the use of the control approach leads to a substantial increase, i.e., up to 15%, in the batch crystal content as the product quality is sustained.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2011.2160945</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2012-09, Vol.20 (5), p.1188-1201 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_pascalfrancis_primary_26324388 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptative systems Applied sciences Batch crystallization Computer science control theory systems Control systems Control theory. Systems Crystallization Crystallizers Crystals Defects direct multiple shooting strategy Discretization dynamic optimization Equations Exact sciences and technology Feasibility Mathematical model Mathematical models Modelling and identification moving horizon estimation Nonlinearity Optimal control population balance equation (PBE) Population balance models Process control Process control. Computer integrated manufacturing Real time systems real-time control Studies |
title | Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Model-Based%20Control%20of%20a%20Semi-Industrial%20Batch%20Crystallizer%20Using%20a%20Population%20Balance%20Modeling%20Framework&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Mesbah,%20A.&rft.date=2012-09-01&rft.volume=20&rft.issue=5&rft.spage=1188&rft.epage=1201&rft.pages=1188-1201&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2011.2160945&rft_dat=%3Cproquest_RIE%3E2702242151%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023191116&rft_id=info:pmid/&rft_ieee_id=5985494&rfr_iscdi=true |