Generative Bayesian Image Super Resolution With Natural Image Prior

We propose a new single image super resolution (SR) algorithm via Bayesian modeling with a natural image prior modeled by a high-order Markov random field (MRF). SR is one of the long-standing and active topics in image processing community. It is of great use in many practical applications, such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2012-09, Vol.21 (9), p.4054-4067
Hauptverfasser: Zhang, Haichao, Zhang, Yanning, Li, Haisen, Huang, Thomas S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new single image super resolution (SR) algorithm via Bayesian modeling with a natural image prior modeled by a high-order Markov random field (MRF). SR is one of the long-standing and active topics in image processing community. It is of great use in many practical applications, such as astronomical observation, medical imaging, and the adaptation of low-resolution contents onto high-resolution displays. One category of the conventional approaches for image SR is formulating the problem with Bayesian modeling techniques and then obtaining its maximum-a-posteriori solution, which actually boils down to a regularized regression task. Although straightforward, this approach cannot exploit the full potential offered by the probabilistic modeling, as only the posterior mode is sought. On the other hand, current Bayesian SR approaches using the posterior mean estimation typically use very simple prior models for natural images to ensure the computational tractability. In this paper, we present a Bayesian image SR approach with a flexible high-order MRF model as the prior for natural images. The minimum mean square error (MMSE) criteria are used for estimating the HR image. A Markov chain Monte Carlo-based sampling algorithm is presented for obtaining the MMSE solution. The proposed method cannot only enjoy the benefits offered by the flexible prior, but also has the advantage of making use of the probabilistic modeling to perform a posterior mean estimation, thus is less sensitive to the local minima problem as the MAP solution. Experimental results indicate that the proposed method can generate competitive or better results than state-of-the-art SR algorithms.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2012.2199330