Distributed H∞ state estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case

This paper deals with the distributed H∞ state estimation problem for a class of discrete time-varying nonlinear systems with both stochastic parameters and stochastic nonlinearities. The system measurements are collected through sensor networks with sensors distributed according to a given topology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2012-08, Vol.48 (8), p.1575-1585
Hauptverfasser: Ding, Derui, Wang, Zidong, Dong, Hongli, Shu, Huisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1585
container_issue 8
container_start_page 1575
container_title Automatica (Oxford)
container_volume 48
creator Ding, Derui
Wang, Zidong
Dong, Hongli
Shu, Huisheng
description This paper deals with the distributed H∞ state estimation problem for a class of discrete time-varying nonlinear systems with both stochastic parameters and stochastic nonlinearities. The system measurements are collected through sensor networks with sensors distributed according to a given topology. The purpose of the addressed problem is to design a set of time-varying estimators such that the average estimation performance of the networked sensors is guaranteed over a given finite-horizon. Through available output measurements from not only the individual sensor but also its neighboring sensors, a necessary and sufficient condition is established to achieve the H∞ performance constraint, and then the estimator design scheme is proposed via a certain H2-type criterion. The desired estimator parameters can be obtained by solving coupled backward recursive Riccati difference equations (RDEs). A numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed estimator design approach.
doi_str_mv 10.1016/j.automatica.2012.05.070
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_26212097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109812002439</els_id><sourcerecordid>S0005109812002439</sourcerecordid><originalsourceid>FETCH-LOGICAL-e159t-613b592f6c3f03bf4373ec8e0be0dc5bc009db17aa118070902589003b1103c43</originalsourceid><addsrcrecordid>eNpFULtOAzEQtBBIhMA_uKG8Y23nXnQQnlIkmlBbPt8e55DYke0QQUXJV_BxfAmOgkS12tHs7MwQQhnkDFh5scjVJrqVikarnAPjORQ5VHBARqyuRMZrUR6SEQAUGYOmPiYnISzSOmE1H5HPGxOiN-0mYkcffr6-aYgqIsUQzU7UWbo1cUio04NKoKZr5dUKI_pAle2odXZpLCpvosFA4-Dd5iUdoA3OU4tx6_xruKTzAWlvrImYDc6bj6SsVcBTctSrZcCzvzkmz3e38-lDNnu6f5xezTJkRROzkom2aHhfatGDaPuJqATqGqFF6HTRaoCma1mlFGN1it8AL-oGEpUxEHoixuR8r7tWQatl75XVJsi1TzH9u-QlZxyaKvGu9zxMZt4Mehm0QauxMx51lJ0zkoHcdS8X8r97ueteQiHTc_ELUGyAIg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed H∞ state estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ding, Derui ; Wang, Zidong ; Dong, Hongli ; Shu, Huisheng</creator><creatorcontrib>Ding, Derui ; Wang, Zidong ; Dong, Hongli ; Shu, Huisheng</creatorcontrib><description>This paper deals with the distributed H∞ state estimation problem for a class of discrete time-varying nonlinear systems with both stochastic parameters and stochastic nonlinearities. The system measurements are collected through sensor networks with sensors distributed according to a given topology. The purpose of the addressed problem is to design a set of time-varying estimators such that the average estimation performance of the networked sensors is guaranteed over a given finite-horizon. Through available output measurements from not only the individual sensor but also its neighboring sensors, a necessary and sufficient condition is established to achieve the H∞ performance constraint, and then the estimator design scheme is proposed via a certain H2-type criterion. The desired estimator parameters can be obtained by solving coupled backward recursive Riccati difference equations (RDEs). A numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed estimator design approach.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2012.05.070</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Control system analysis ; Control theory. Systems ; Discrete time-varying systems ; Distributed [formula omitted] state estimation ; Exact sciences and technology ; Modelling and identification ; Recursive Riccati difference equations ; Sensor networks ; Software ; Stochastic nonlinearities ; Stochastic parameters</subject><ispartof>Automatica (Oxford), 2012-08, Vol.48 (8), p.1575-1585</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005109812002439$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26212097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Derui</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><creatorcontrib>Dong, Hongli</creatorcontrib><creatorcontrib>Shu, Huisheng</creatorcontrib><title>Distributed H∞ state estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case</title><title>Automatica (Oxford)</title><description>This paper deals with the distributed H∞ state estimation problem for a class of discrete time-varying nonlinear systems with both stochastic parameters and stochastic nonlinearities. The system measurements are collected through sensor networks with sensors distributed according to a given topology. The purpose of the addressed problem is to design a set of time-varying estimators such that the average estimation performance of the networked sensors is guaranteed over a given finite-horizon. Through available output measurements from not only the individual sensor but also its neighboring sensors, a necessary and sufficient condition is established to achieve the H∞ performance constraint, and then the estimator design scheme is proposed via a certain H2-type criterion. The desired estimator parameters can be obtained by solving coupled backward recursive Riccati difference equations (RDEs). A numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed estimator design approach.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Discrete time-varying systems</subject><subject>Distributed [formula omitted] state estimation</subject><subject>Exact sciences and technology</subject><subject>Modelling and identification</subject><subject>Recursive Riccati difference equations</subject><subject>Sensor networks</subject><subject>Software</subject><subject>Stochastic nonlinearities</subject><subject>Stochastic parameters</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFULtOAzEQtBBIhMA_uKG8Y23nXnQQnlIkmlBbPt8e55DYke0QQUXJV_BxfAmOgkS12tHs7MwQQhnkDFh5scjVJrqVikarnAPjORQ5VHBARqyuRMZrUR6SEQAUGYOmPiYnISzSOmE1H5HPGxOiN-0mYkcffr6-aYgqIsUQzU7UWbo1cUio04NKoKZr5dUKI_pAle2odXZpLCpvosFA4-Dd5iUdoA3OU4tx6_xruKTzAWlvrImYDc6bj6SsVcBTctSrZcCzvzkmz3e38-lDNnu6f5xezTJkRROzkom2aHhfatGDaPuJqATqGqFF6HTRaoCma1mlFGN1it8AL-oGEpUxEHoixuR8r7tWQatl75XVJsi1TzH9u-QlZxyaKvGu9zxMZt4Mehm0QauxMx51lJ0zkoHcdS8X8r97ueteQiHTc_ELUGyAIg</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Ding, Derui</creator><creator>Wang, Zidong</creator><creator>Dong, Hongli</creator><creator>Shu, Huisheng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>201208</creationdate><title>Distributed H∞ state estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case</title><author>Ding, Derui ; Wang, Zidong ; Dong, Hongli ; Shu, Huisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e159t-613b592f6c3f03bf4373ec8e0be0dc5bc009db17aa118070902589003b1103c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Discrete time-varying systems</topic><topic>Distributed [formula omitted] state estimation</topic><topic>Exact sciences and technology</topic><topic>Modelling and identification</topic><topic>Recursive Riccati difference equations</topic><topic>Sensor networks</topic><topic>Software</topic><topic>Stochastic nonlinearities</topic><topic>Stochastic parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Derui</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><creatorcontrib>Dong, Hongli</creatorcontrib><creatorcontrib>Shu, Huisheng</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Derui</au><au>Wang, Zidong</au><au>Dong, Hongli</au><au>Shu, Huisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed H∞ state estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case</atitle><jtitle>Automatica (Oxford)</jtitle><date>2012-08</date><risdate>2012</risdate><volume>48</volume><issue>8</issue><spage>1575</spage><epage>1585</epage><pages>1575-1585</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This paper deals with the distributed H∞ state estimation problem for a class of discrete time-varying nonlinear systems with both stochastic parameters and stochastic nonlinearities. The system measurements are collected through sensor networks with sensors distributed according to a given topology. The purpose of the addressed problem is to design a set of time-varying estimators such that the average estimation performance of the networked sensors is guaranteed over a given finite-horizon. Through available output measurements from not only the individual sensor but also its neighboring sensors, a necessary and sufficient condition is established to achieve the H∞ performance constraint, and then the estimator design scheme is proposed via a certain H2-type criterion. The desired estimator parameters can be obtained by solving coupled backward recursive Riccati difference equations (RDEs). A numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed estimator design approach.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2012.05.070</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2012-08, Vol.48 (8), p.1575-1585
issn 0005-1098
1873-2836
language eng
recordid cdi_pascalfrancis_primary_26212097
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Control system analysis
Control theory. Systems
Discrete time-varying systems
Distributed [formula omitted] state estimation
Exact sciences and technology
Modelling and identification
Recursive Riccati difference equations
Sensor networks
Software
Stochastic nonlinearities
Stochastic parameters
title Distributed H∞ state estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20H%E2%88%9E%20state%20estimation%20with%20stochastic%20parameters%20and%20nonlinearities%20through%20sensor%20networks:%20The%20finite-horizon%20case&rft.jtitle=Automatica%20(Oxford)&rft.au=Ding,%20Derui&rft.date=2012-08&rft.volume=48&rft.issue=8&rft.spage=1575&rft.epage=1585&rft.pages=1575-1585&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2012.05.070&rft_dat=%3Celsevier_pasca%3ES0005109812002439%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0005109812002439&rfr_iscdi=true