Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material
The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids h...
Gespeichert in:
Veröffentlicht in: | Smart materials and structures 2012-07, Vol.21 (7), p.75012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 75012 |
container_title | Smart materials and structures |
container_volume | 21 |
creator | Son, Kwon Joong Fahrenthold, Eric P |
description | The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid's hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact. |
doi_str_mv | 10.1088/0964-1726/21/7/075012 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_iop_j</sourceid><recordid>TN_cdi_pascalfrancis_primary_26207764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26207764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-330eb8f0839e5718839e28f826f2092a1d61ce5631d94dea4a96bfc4cecf83913</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BCEbl3XykjZNlzKMHyC4UXEXXtNkzNBphqQV_Pe2Vmbr6sLjngvnEXIN7BaYUitWyTyDkssVh1W5YmXBgJ-QBQgJmZTFxylZHDvn5CKlHWMASsCCvG--sB2w96GjwdE9bjvbh_hpQxu23mBLXTv4huKw3duutw11WEdvKCaK1EX8PdMaY_Q2jnxvo8f2kpw5bJO9-sslebvfvK4fs-eXh6f13XNmBC_6TAhma-WYEpUtSlBTcuUUl46ziiM0EowtpICmyhuLOVaydiY31rixC2JJinnXxJBStE4fot9j_NbA9PQcPYnrSVxz0KWenzNyNzN3wDRKjh6d8ekIc8lZWcp87MHc8-Ggd2GI3Wjzz_YPjKZ0Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Son, Kwon Joong ; Fahrenthold, Eric P</creator><creatorcontrib>Son, Kwon Joong ; Fahrenthold, Eric P</creatorcontrib><description>The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid's hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/0964-1726/21/7/075012</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Electro- and magnetorheological fluids ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Material types ; Measurement and testing methods ; Physics ; Rheology ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Smart materials and structures, 2012-07, Vol.21 (7), p.75012</ispartof><rights>2012 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-330eb8f0839e5718839e28f826f2092a1d61ce5631d94dea4a96bfc4cecf83913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0964-1726/21/7/075012/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26207764$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Son, Kwon Joong</creatorcontrib><creatorcontrib>Fahrenthold, Eric P</creatorcontrib><title>Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid's hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electro- and magnetorheological fluids</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Material types</subject><subject>Measurement and testing methods</subject><subject>Physics</subject><subject>Rheology</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BCEbl3XykjZNlzKMHyC4UXEXXtNkzNBphqQV_Pe2Vmbr6sLjngvnEXIN7BaYUitWyTyDkssVh1W5YmXBgJ-QBQgJmZTFxylZHDvn5CKlHWMASsCCvG--sB2w96GjwdE9bjvbh_hpQxu23mBLXTv4huKw3duutw11WEdvKCaK1EX8PdMaY_Q2jnxvo8f2kpw5bJO9-sslebvfvK4fs-eXh6f13XNmBC_6TAhma-WYEpUtSlBTcuUUl46ziiM0EowtpICmyhuLOVaydiY31rixC2JJinnXxJBStE4fot9j_NbA9PQcPYnrSVxz0KWenzNyNzN3wDRKjh6d8ekIc8lZWcp87MHc8-Ggd2GI3Wjzz_YPjKZ0Cw</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Son, Kwon Joong</creator><creator>Fahrenthold, Eric P</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material</title><author>Son, Kwon Joong ; Fahrenthold, Eric P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-330eb8f0839e5718839e28f826f2092a1d61ce5631d94dea4a96bfc4cecf83913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electro- and magnetorheological fluids</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Material types</topic><topic>Measurement and testing methods</topic><topic>Physics</topic><topic>Rheology</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Kwon Joong</creatorcontrib><creatorcontrib>Fahrenthold, Eric P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Kwon Joong</au><au>Fahrenthold, Eric P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>21</volume><issue>7</issue><spage>75012</spage><pages>75012-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid's hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0964-1726/21/7/075012</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1726 |
ispartof | Smart materials and structures, 2012-07, Vol.21 (7), p.75012 |
issn | 0964-1726 1361-665X |
language | eng |
recordid | cdi_pascalfrancis_primary_26207764 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Cross-disciplinary physics: materials science rheology Electro- and magnetorheological fluids Exact sciences and technology Fundamental areas of phenomenology (including applications) Material types Measurement and testing methods Physics Rheology Solid mechanics Structural and continuum mechanics |
title | Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20magnetorheological%20fluid%20augmented%20fabric%20as%20a%20fragment%20barrier%20material&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Son,%20Kwon%20Joong&rft.date=2012-07-01&rft.volume=21&rft.issue=7&rft.spage=75012&rft.pages=75012-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/0964-1726/21/7/075012&rft_dat=%3Cpascalfrancis_iop_j%3E26207764%3C/pascalfrancis_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |