Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material

The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2012-07, Vol.21 (7), p.75012
Hauptverfasser: Son, Kwon Joong, Fahrenthold, Eric P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 75012
container_title Smart materials and structures
container_volume 21
creator Son, Kwon Joong
Fahrenthold, Eric P
description The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid's hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact.
doi_str_mv 10.1088/0964-1726/21/7/075012
format Article
fullrecord <record><control><sourceid>pascalfrancis_iop_j</sourceid><recordid>TN_cdi_pascalfrancis_primary_26207764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26207764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-330eb8f0839e5718839e28f826f2092a1d61ce5631d94dea4a96bfc4cecf83913</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BCEbl3XykjZNlzKMHyC4UXEXXtNkzNBphqQV_Pe2Vmbr6sLjngvnEXIN7BaYUitWyTyDkssVh1W5YmXBgJ-QBQgJmZTFxylZHDvn5CKlHWMASsCCvG--sB2w96GjwdE9bjvbh_hpQxu23mBLXTv4huKw3duutw11WEdvKCaK1EX8PdMaY_Q2jnxvo8f2kpw5bJO9-sslebvfvK4fs-eXh6f13XNmBC_6TAhma-WYEpUtSlBTcuUUl46ziiM0EowtpICmyhuLOVaydiY31rixC2JJinnXxJBStE4fot9j_NbA9PQcPYnrSVxz0KWenzNyNzN3wDRKjh6d8ekIc8lZWcp87MHc8-Ggd2GI3Wjzz_YPjKZ0Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Son, Kwon Joong ; Fahrenthold, Eric P</creator><creatorcontrib>Son, Kwon Joong ; Fahrenthold, Eric P</creatorcontrib><description>The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid's hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/0964-1726/21/7/075012</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Electro- and magnetorheological fluids ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Material types ; Measurement and testing methods ; Physics ; Rheology ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Smart materials and structures, 2012-07, Vol.21 (7), p.75012</ispartof><rights>2012 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-330eb8f0839e5718839e28f826f2092a1d61ce5631d94dea4a96bfc4cecf83913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0964-1726/21/7/075012/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26207764$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Son, Kwon Joong</creatorcontrib><creatorcontrib>Fahrenthold, Eric P</creatorcontrib><title>Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid's hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electro- and magnetorheological fluids</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Material types</subject><subject>Measurement and testing methods</subject><subject>Physics</subject><subject>Rheology</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BCEbl3XykjZNlzKMHyC4UXEXXtNkzNBphqQV_Pe2Vmbr6sLjngvnEXIN7BaYUitWyTyDkssVh1W5YmXBgJ-QBQgJmZTFxylZHDvn5CKlHWMASsCCvG--sB2w96GjwdE9bjvbh_hpQxu23mBLXTv4huKw3duutw11WEdvKCaK1EX8PdMaY_Q2jnxvo8f2kpw5bJO9-sslebvfvK4fs-eXh6f13XNmBC_6TAhma-WYEpUtSlBTcuUUl46ziiM0EowtpICmyhuLOVaydiY31rixC2JJinnXxJBStE4fot9j_NbA9PQcPYnrSVxz0KWenzNyNzN3wDRKjh6d8ekIc8lZWcp87MHc8-Ggd2GI3Wjzz_YPjKZ0Cw</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Son, Kwon Joong</creator><creator>Fahrenthold, Eric P</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material</title><author>Son, Kwon Joong ; Fahrenthold, Eric P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-330eb8f0839e5718839e28f826f2092a1d61ce5631d94dea4a96bfc4cecf83913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electro- and magnetorheological fluids</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Material types</topic><topic>Measurement and testing methods</topic><topic>Physics</topic><topic>Rheology</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Kwon Joong</creatorcontrib><creatorcontrib>Fahrenthold, Eric P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Kwon Joong</au><au>Fahrenthold, Eric P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>21</volume><issue>7</issue><spage>75012</spage><pages>75012-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid's hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0964-1726/21/7/075012</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2012-07, Vol.21 (7), p.75012
issn 0964-1726
1361-665X
language eng
recordid cdi_pascalfrancis_primary_26207764
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Cross-disciplinary physics: materials science
rheology
Electro- and magnetorheological fluids
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Material types
Measurement and testing methods
Physics
Rheology
Solid mechanics
Structural and continuum mechanics
title Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20magnetorheological%20fluid%20augmented%20fabric%20as%20a%20fragment%20barrier%20material&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Son,%20Kwon%20Joong&rft.date=2012-07-01&rft.volume=21&rft.issue=7&rft.spage=75012&rft.pages=75012-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/0964-1726/21/7/075012&rft_dat=%3Cpascalfrancis_iop_j%3E26207764%3C/pascalfrancis_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true