Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics

An integrated device-fabric methodology for evaluating and validating nanoscale computing fabrics is presented. The methodology integrates physical layer assumptions for materials and device structures with accurate 3-D simulations of device electrostatics and operations and circuit-level noise and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2012-07, Vol.11 (4), p.687-700
Hauptverfasser: Narayanan, P., Kina, J., Panchapakeshan, P., Chui, C. O., Moritz, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 700
container_issue 4
container_start_page 687
container_title IEEE transactions on nanotechnology
container_volume 11
creator Narayanan, P.
Kina, J.
Panchapakeshan, P.
Chui, C. O.
Moritz, C. A.
description An integrated device-fabric methodology for evaluating and validating nanoscale computing fabrics is presented. The methodology integrates physical layer assumptions for materials and device structures with accurate 3-D simulations of device electrostatics and operations and circuit-level noise and cascading validations. Electrical characteristics of six different crossed nanowire field-effect transistors (xnwFETs) are simulated and current and capacitance data are obtained. Behavioral models incorporating device data are generated and used in fabric level simulations to evaluate noise implications of devices and sequencing schemes. Device characteristics are found to have different implications for logic "1" and logic "0" noise with faster devices being more (less) resilient to logic "1" (logic "0") noise. A new noise resilient dynamic sequencing scheme is presented which isolates logic "0" noise events and prevents them from propagating to cascaded circuit stages, thereby enabling faster devices. Performance implications and optimizations for fabrics incorporating the new noise resilient scheme are discussed. The scheme is also analyzed and validated against an external noise source (power supply drooping). These results show that noise resilient nanofabrics can be designed through a combination of device engineering and fabric-level optimizations of the sequencing scheme. Performance optimizations and implications of device and physical layer assumptions on manufacturing are discussed.
doi_str_mv 10.1109/TNANO.2012.2189413
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_26150666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6159091</ieee_id><sourcerecordid>26150666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-b191e3f582ecd41a351034a39ce5066f7af78b4b9f41fe01bfac215dfff8d3ed3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmPwB-CSC8eOOGna5jiNDSaN9jIkblWaOlPQaKekQvDv167TTrb83rOtj5BHYDMApl62-TwvZpwBn3HIVAziikygrxFjmbzueymSCLj8uiV3IXwzBmkiswkp1k2HO687rOkr_jqD0UpX3hm6_Dvs215wbROobmqaty4g_XCd252m1DU0100bjN4jHVPhntxYvQ_4cK5T8rlabhfv0aZ4Wy_mm8hwlXZRBQpQWJlxNHUMWkhgItZCGZQsSWyqbZpVcaVsDBYZVFYbDrK21ma1wFpMCR_3Gt-G4NGWB-9-tP8vgZUDkvKEpByQlGckfeh5DB308LT1ujEuXJI8geF40vueRp9DxIvcq4opEEeoeGt5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics</title><source>IEEE Electronic Library (IEL)</source><creator>Narayanan, P. ; Kina, J. ; Panchapakeshan, P. ; Chui, C. O. ; Moritz, C. A.</creator><creatorcontrib>Narayanan, P. ; Kina, J. ; Panchapakeshan, P. ; Chui, C. O. ; Moritz, C. A.</creatorcontrib><description>An integrated device-fabric methodology for evaluating and validating nanoscale computing fabrics is presented. The methodology integrates physical layer assumptions for materials and device structures with accurate 3-D simulations of device electrostatics and operations and circuit-level noise and cascading validations. Electrical characteristics of six different crossed nanowire field-effect transistors (xnwFETs) are simulated and current and capacitance data are obtained. Behavioral models incorporating device data are generated and used in fabric level simulations to evaluate noise implications of devices and sequencing schemes. Device characteristics are found to have different implications for logic "1" and logic "0" noise with faster devices being more (less) resilient to logic "1" (logic "0") noise. A new noise resilient dynamic sequencing scheme is presented which isolates logic "0" noise events and prevents them from propagating to cascaded circuit stages, thereby enabling faster devices. Performance implications and optimizations for fabrics incorporating the new noise resilient scheme are discussed. The scheme is also analyzed and validated against an external noise source (power supply drooping). These results show that noise resilient nanofabrics can be designed through a combination of device engineering and fabric-level optimizations of the sequencing scheme. Performance optimizations and implications of device and physical layer assumptions on manufacturing are discussed.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2012.2189413</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitance ; Design. Technologies. Operation analysis. Testing ; Dynamic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; emerging technologies ; Exact sciences and technology ; Fabrics ; Integrated circuit modeling ; Integrated circuits ; Logic gates ; Molecular electronics, nanoelectronics ; nanoarchitecture ; nanodevices ; nanoscale computing fabrics ; Nanoscale devices ; nanowire crossbar ; nanowire FETs ; NASICs ; Noise ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; semiconductor nanowires ; Silicon ; Transistors</subject><ispartof>IEEE transactions on nanotechnology, 2012-07, Vol.11 (4), p.687-700</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-b191e3f582ecd41a351034a39ce5066f7af78b4b9f41fe01bfac215dfff8d3ed3</citedby><cites>FETCH-LOGICAL-c297t-b191e3f582ecd41a351034a39ce5066f7af78b4b9f41fe01bfac215dfff8d3ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6159091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6159091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26150666$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Narayanan, P.</creatorcontrib><creatorcontrib>Kina, J.</creatorcontrib><creatorcontrib>Panchapakeshan, P.</creatorcontrib><creatorcontrib>Chui, C. O.</creatorcontrib><creatorcontrib>Moritz, C. A.</creatorcontrib><title>Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>An integrated device-fabric methodology for evaluating and validating nanoscale computing fabrics is presented. The methodology integrates physical layer assumptions for materials and device structures with accurate 3-D simulations of device electrostatics and operations and circuit-level noise and cascading validations. Electrical characteristics of six different crossed nanowire field-effect transistors (xnwFETs) are simulated and current and capacitance data are obtained. Behavioral models incorporating device data are generated and used in fabric level simulations to evaluate noise implications of devices and sequencing schemes. Device characteristics are found to have different implications for logic "1" and logic "0" noise with faster devices being more (less) resilient to logic "1" (logic "0") noise. A new noise resilient dynamic sequencing scheme is presented which isolates logic "0" noise events and prevents them from propagating to cascaded circuit stages, thereby enabling faster devices. Performance implications and optimizations for fabrics incorporating the new noise resilient scheme are discussed. The scheme is also analyzed and validated against an external noise source (power supply drooping). These results show that noise resilient nanofabrics can be designed through a combination of device engineering and fabric-level optimizations of the sequencing scheme. Performance optimizations and implications of device and physical layer assumptions on manufacturing are discussed.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dynamic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>emerging technologies</subject><subject>Exact sciences and technology</subject><subject>Fabrics</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Logic gates</subject><subject>Molecular electronics, nanoelectronics</subject><subject>nanoarchitecture</subject><subject>nanodevices</subject><subject>nanoscale computing fabrics</subject><subject>Nanoscale devices</subject><subject>nanowire crossbar</subject><subject>nanowire FETs</subject><subject>NASICs</subject><subject>Noise</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>semiconductor nanowires</subject><subject>Silicon</subject><subject>Transistors</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSMEEmPwB-CSC8eOOGna5jiNDSaN9jIkblWaOlPQaKekQvDv167TTrb83rOtj5BHYDMApl62-TwvZpwBn3HIVAziikygrxFjmbzueymSCLj8uiV3IXwzBmkiswkp1k2HO687rOkr_jqD0UpX3hm6_Dvs215wbROobmqaty4g_XCd252m1DU0100bjN4jHVPhntxYvQ_4cK5T8rlabhfv0aZ4Wy_mm8hwlXZRBQpQWJlxNHUMWkhgItZCGZQsSWyqbZpVcaVsDBYZVFYbDrK21ma1wFpMCR_3Gt-G4NGWB-9-tP8vgZUDkvKEpByQlGckfeh5DB308LT1ujEuXJI8geF40vueRp9DxIvcq4opEEeoeGt5</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Narayanan, P.</creator><creator>Kina, J.</creator><creator>Panchapakeshan, P.</creator><creator>Chui, C. O.</creator><creator>Moritz, C. A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics</title><author>Narayanan, P. ; Kina, J. ; Panchapakeshan, P. ; Chui, C. O. ; Moritz, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-b191e3f582ecd41a351034a39ce5066f7af78b4b9f41fe01bfac215dfff8d3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dynamic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>emerging technologies</topic><topic>Exact sciences and technology</topic><topic>Fabrics</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Logic gates</topic><topic>Molecular electronics, nanoelectronics</topic><topic>nanoarchitecture</topic><topic>nanodevices</topic><topic>nanoscale computing fabrics</topic><topic>Nanoscale devices</topic><topic>nanowire crossbar</topic><topic>nanowire FETs</topic><topic>NASICs</topic><topic>Noise</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>semiconductor nanowires</topic><topic>Silicon</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayanan, P.</creatorcontrib><creatorcontrib>Kina, J.</creatorcontrib><creatorcontrib>Panchapakeshan, P.</creatorcontrib><creatorcontrib>Chui, C. O.</creatorcontrib><creatorcontrib>Moritz, C. A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Narayanan, P.</au><au>Kina, J.</au><au>Panchapakeshan, P.</au><au>Chui, C. O.</au><au>Moritz, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>11</volume><issue>4</issue><spage>687</spage><epage>700</epage><pages>687-700</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>An integrated device-fabric methodology for evaluating and validating nanoscale computing fabrics is presented. The methodology integrates physical layer assumptions for materials and device structures with accurate 3-D simulations of device electrostatics and operations and circuit-level noise and cascading validations. Electrical characteristics of six different crossed nanowire field-effect transistors (xnwFETs) are simulated and current and capacitance data are obtained. Behavioral models incorporating device data are generated and used in fabric level simulations to evaluate noise implications of devices and sequencing schemes. Device characteristics are found to have different implications for logic "1" and logic "0" noise with faster devices being more (less) resilient to logic "1" (logic "0") noise. A new noise resilient dynamic sequencing scheme is presented which isolates logic "0" noise events and prevents them from propagating to cascaded circuit stages, thereby enabling faster devices. Performance implications and optimizations for fabrics incorporating the new noise resilient scheme are discussed. The scheme is also analyzed and validated against an external noise source (power supply drooping). These results show that noise resilient nanofabrics can be designed through a combination of device engineering and fabric-level optimizations of the sequencing scheme. Performance optimizations and implications of device and physical layer assumptions on manufacturing are discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2012.2189413</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2012-07, Vol.11 (4), p.687-700
issn 1536-125X
1941-0085
language eng
recordid cdi_pascalfrancis_primary_26150666
source IEEE Electronic Library (IEL)
subjects Applied sciences
Capacitance
Design. Technologies. Operation analysis. Testing
Dynamic circuits
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
emerging technologies
Exact sciences and technology
Fabrics
Integrated circuit modeling
Integrated circuits
Logic gates
Molecular electronics, nanoelectronics
nanoarchitecture
nanodevices
nanoscale computing fabrics
Nanoscale devices
nanowire crossbar
nanowire FETs
NASICs
Noise
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
semiconductor nanowires
Silicon
Transistors
title Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Device-Fabric%20Explorations%20and%20Noise%20Mitigation%20in%20Nanoscale%20Fabrics&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Narayanan,%20P.&rft.date=2012-07-01&rft.volume=11&rft.issue=4&rft.spage=687&rft.epage=700&rft.pages=687-700&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2012.2189413&rft_dat=%3Cpascalfrancis_RIE%3E26150666%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6159091&rfr_iscdi=true