Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics
An integrated device-fabric methodology for evaluating and validating nanoscale computing fabrics is presented. The methodology integrates physical layer assumptions for materials and device structures with accurate 3-D simulations of device electrostatics and operations and circuit-level noise and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2012-07, Vol.11 (4), p.687-700 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 700 |
---|---|
container_issue | 4 |
container_start_page | 687 |
container_title | IEEE transactions on nanotechnology |
container_volume | 11 |
creator | Narayanan, P. Kina, J. Panchapakeshan, P. Chui, C. O. Moritz, C. A. |
description | An integrated device-fabric methodology for evaluating and validating nanoscale computing fabrics is presented. The methodology integrates physical layer assumptions for materials and device structures with accurate 3-D simulations of device electrostatics and operations and circuit-level noise and cascading validations. Electrical characteristics of six different crossed nanowire field-effect transistors (xnwFETs) are simulated and current and capacitance data are obtained. Behavioral models incorporating device data are generated and used in fabric level simulations to evaluate noise implications of devices and sequencing schemes. Device characteristics are found to have different implications for logic "1" and logic "0" noise with faster devices being more (less) resilient to logic "1" (logic "0") noise. A new noise resilient dynamic sequencing scheme is presented which isolates logic "0" noise events and prevents them from propagating to cascaded circuit stages, thereby enabling faster devices. Performance implications and optimizations for fabrics incorporating the new noise resilient scheme are discussed. The scheme is also analyzed and validated against an external noise source (power supply drooping). These results show that noise resilient nanofabrics can be designed through a combination of device engineering and fabric-level optimizations of the sequencing scheme. Performance optimizations and implications of device and physical layer assumptions on manufacturing are discussed. |
doi_str_mv | 10.1109/TNANO.2012.2189413 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_26150666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6159091</ieee_id><sourcerecordid>26150666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-b191e3f582ecd41a351034a39ce5066f7af78b4b9f41fe01bfac215dfff8d3ed3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmPwB-CSC8eOOGna5jiNDSaN9jIkblWaOlPQaKekQvDv167TTrb83rOtj5BHYDMApl62-TwvZpwBn3HIVAziikygrxFjmbzueymSCLj8uiV3IXwzBmkiswkp1k2HO687rOkr_jqD0UpX3hm6_Dvs215wbROobmqaty4g_XCd252m1DU0100bjN4jHVPhntxYvQ_4cK5T8rlabhfv0aZ4Wy_mm8hwlXZRBQpQWJlxNHUMWkhgItZCGZQsSWyqbZpVcaVsDBYZVFYbDrK21ma1wFpMCR_3Gt-G4NGWB-9-tP8vgZUDkvKEpByQlGckfeh5DB308LT1ujEuXJI8geF40vueRp9DxIvcq4opEEeoeGt5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics</title><source>IEEE Electronic Library (IEL)</source><creator>Narayanan, P. ; Kina, J. ; Panchapakeshan, P. ; Chui, C. O. ; Moritz, C. A.</creator><creatorcontrib>Narayanan, P. ; Kina, J. ; Panchapakeshan, P. ; Chui, C. O. ; Moritz, C. A.</creatorcontrib><description>An integrated device-fabric methodology for evaluating and validating nanoscale computing fabrics is presented. The methodology integrates physical layer assumptions for materials and device structures with accurate 3-D simulations of device electrostatics and operations and circuit-level noise and cascading validations. Electrical characteristics of six different crossed nanowire field-effect transistors (xnwFETs) are simulated and current and capacitance data are obtained. Behavioral models incorporating device data are generated and used in fabric level simulations to evaluate noise implications of devices and sequencing schemes. Device characteristics are found to have different implications for logic "1" and logic "0" noise with faster devices being more (less) resilient to logic "1" (logic "0") noise. A new noise resilient dynamic sequencing scheme is presented which isolates logic "0" noise events and prevents them from propagating to cascaded circuit stages, thereby enabling faster devices. Performance implications and optimizations for fabrics incorporating the new noise resilient scheme are discussed. The scheme is also analyzed and validated against an external noise source (power supply drooping). These results show that noise resilient nanofabrics can be designed through a combination of device engineering and fabric-level optimizations of the sequencing scheme. Performance optimizations and implications of device and physical layer assumptions on manufacturing are discussed.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2012.2189413</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitance ; Design. Technologies. Operation analysis. Testing ; Dynamic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; emerging technologies ; Exact sciences and technology ; Fabrics ; Integrated circuit modeling ; Integrated circuits ; Logic gates ; Molecular electronics, nanoelectronics ; nanoarchitecture ; nanodevices ; nanoscale computing fabrics ; Nanoscale devices ; nanowire crossbar ; nanowire FETs ; NASICs ; Noise ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; semiconductor nanowires ; Silicon ; Transistors</subject><ispartof>IEEE transactions on nanotechnology, 2012-07, Vol.11 (4), p.687-700</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-b191e3f582ecd41a351034a39ce5066f7af78b4b9f41fe01bfac215dfff8d3ed3</citedby><cites>FETCH-LOGICAL-c297t-b191e3f582ecd41a351034a39ce5066f7af78b4b9f41fe01bfac215dfff8d3ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6159091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6159091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26150666$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Narayanan, P.</creatorcontrib><creatorcontrib>Kina, J.</creatorcontrib><creatorcontrib>Panchapakeshan, P.</creatorcontrib><creatorcontrib>Chui, C. O.</creatorcontrib><creatorcontrib>Moritz, C. A.</creatorcontrib><title>Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>An integrated device-fabric methodology for evaluating and validating nanoscale computing fabrics is presented. The methodology integrates physical layer assumptions for materials and device structures with accurate 3-D simulations of device electrostatics and operations and circuit-level noise and cascading validations. Electrical characteristics of six different crossed nanowire field-effect transistors (xnwFETs) are simulated and current and capacitance data are obtained. Behavioral models incorporating device data are generated and used in fabric level simulations to evaluate noise implications of devices and sequencing schemes. Device characteristics are found to have different implications for logic "1" and logic "0" noise with faster devices being more (less) resilient to logic "1" (logic "0") noise. A new noise resilient dynamic sequencing scheme is presented which isolates logic "0" noise events and prevents them from propagating to cascaded circuit stages, thereby enabling faster devices. Performance implications and optimizations for fabrics incorporating the new noise resilient scheme are discussed. The scheme is also analyzed and validated against an external noise source (power supply drooping). These results show that noise resilient nanofabrics can be designed through a combination of device engineering and fabric-level optimizations of the sequencing scheme. Performance optimizations and implications of device and physical layer assumptions on manufacturing are discussed.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dynamic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>emerging technologies</subject><subject>Exact sciences and technology</subject><subject>Fabrics</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Logic gates</subject><subject>Molecular electronics, nanoelectronics</subject><subject>nanoarchitecture</subject><subject>nanodevices</subject><subject>nanoscale computing fabrics</subject><subject>Nanoscale devices</subject><subject>nanowire crossbar</subject><subject>nanowire FETs</subject><subject>NASICs</subject><subject>Noise</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>semiconductor nanowires</subject><subject>Silicon</subject><subject>Transistors</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSMEEmPwB-CSC8eOOGna5jiNDSaN9jIkblWaOlPQaKekQvDv167TTrb83rOtj5BHYDMApl62-TwvZpwBn3HIVAziikygrxFjmbzueymSCLj8uiV3IXwzBmkiswkp1k2HO687rOkr_jqD0UpX3hm6_Dvs215wbROobmqaty4g_XCd252m1DU0100bjN4jHVPhntxYvQ_4cK5T8rlabhfv0aZ4Wy_mm8hwlXZRBQpQWJlxNHUMWkhgItZCGZQsSWyqbZpVcaVsDBYZVFYbDrK21ma1wFpMCR_3Gt-G4NGWB-9-tP8vgZUDkvKEpByQlGckfeh5DB308LT1ujEuXJI8geF40vueRp9DxIvcq4opEEeoeGt5</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Narayanan, P.</creator><creator>Kina, J.</creator><creator>Panchapakeshan, P.</creator><creator>Chui, C. O.</creator><creator>Moritz, C. A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics</title><author>Narayanan, P. ; Kina, J. ; Panchapakeshan, P. ; Chui, C. O. ; Moritz, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-b191e3f582ecd41a351034a39ce5066f7af78b4b9f41fe01bfac215dfff8d3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dynamic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>emerging technologies</topic><topic>Exact sciences and technology</topic><topic>Fabrics</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Logic gates</topic><topic>Molecular electronics, nanoelectronics</topic><topic>nanoarchitecture</topic><topic>nanodevices</topic><topic>nanoscale computing fabrics</topic><topic>Nanoscale devices</topic><topic>nanowire crossbar</topic><topic>nanowire FETs</topic><topic>NASICs</topic><topic>Noise</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>semiconductor nanowires</topic><topic>Silicon</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayanan, P.</creatorcontrib><creatorcontrib>Kina, J.</creatorcontrib><creatorcontrib>Panchapakeshan, P.</creatorcontrib><creatorcontrib>Chui, C. O.</creatorcontrib><creatorcontrib>Moritz, C. A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Narayanan, P.</au><au>Kina, J.</au><au>Panchapakeshan, P.</au><au>Chui, C. O.</au><au>Moritz, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>11</volume><issue>4</issue><spage>687</spage><epage>700</epage><pages>687-700</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>An integrated device-fabric methodology for evaluating and validating nanoscale computing fabrics is presented. The methodology integrates physical layer assumptions for materials and device structures with accurate 3-D simulations of device electrostatics and operations and circuit-level noise and cascading validations. Electrical characteristics of six different crossed nanowire field-effect transistors (xnwFETs) are simulated and current and capacitance data are obtained. Behavioral models incorporating device data are generated and used in fabric level simulations to evaluate noise implications of devices and sequencing schemes. Device characteristics are found to have different implications for logic "1" and logic "0" noise with faster devices being more (less) resilient to logic "1" (logic "0") noise. A new noise resilient dynamic sequencing scheme is presented which isolates logic "0" noise events and prevents them from propagating to cascaded circuit stages, thereby enabling faster devices. Performance implications and optimizations for fabrics incorporating the new noise resilient scheme are discussed. The scheme is also analyzed and validated against an external noise source (power supply drooping). These results show that noise resilient nanofabrics can be designed through a combination of device engineering and fabric-level optimizations of the sequencing scheme. Performance optimizations and implications of device and physical layer assumptions on manufacturing are discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2012.2189413</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2012-07, Vol.11 (4), p.687-700 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_pascalfrancis_primary_26150666 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Capacitance Design. Technologies. Operation analysis. Testing Dynamic circuits Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics emerging technologies Exact sciences and technology Fabrics Integrated circuit modeling Integrated circuits Logic gates Molecular electronics, nanoelectronics nanoarchitecture nanodevices nanoscale computing fabrics Nanoscale devices nanowire crossbar nanowire FETs NASICs Noise Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices semiconductor nanowires Silicon Transistors |
title | Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale Fabrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Device-Fabric%20Explorations%20and%20Noise%20Mitigation%20in%20Nanoscale%20Fabrics&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Narayanan,%20P.&rft.date=2012-07-01&rft.volume=11&rft.issue=4&rft.spage=687&rft.epage=700&rft.pages=687-700&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2012.2189413&rft_dat=%3Cpascalfrancis_RIE%3E26150666%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6159091&rfr_iscdi=true |