Visual Workflow Recognition Using a Variational Bayesian Treatment of Multistream Fused Hidden Markov Models

In this paper, we provide a variational Bayesian (VB) treatment of multistream fused hidden Markov models (MFHMMs), and apply it in the context of active learning-based visual workflow recognition (WR). Contrary to training methods yielding point estimates, such as maximum likelihood or maximum a po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2012-07, Vol.22 (7), p.1076-1086
Hauptverfasser: Chatzis, S. P., Kosmopoulos, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1086
container_issue 7
container_start_page 1076
container_title IEEE transactions on circuits and systems for video technology
container_volume 22
creator Chatzis, S. P.
Kosmopoulos, D.
description In this paper, we provide a variational Bayesian (VB) treatment of multistream fused hidden Markov models (MFHMMs), and apply it in the context of active learning-based visual workflow recognition (WR). Contrary to training methods yielding point estimates, such as maximum likelihood or maximum a posteriori training, the VB approach provides an estimate of the posterior distribution over the MFHMM parameters. As a result, our approach provides an elegant solution toward the amelioration of the overfitting issues of point estimate-based methods. Additionally, it provides a measure of confidence in the accuracy of the learned model, thus allowing for the easy and cost-effective utilization of active learning in the context of MFHMMs. Two alternative active learning algorithms are considered in this paper: query by committee, which selects unlabeled data that minimize the classification variance, and a maximum information gain method that aims to maximize the alteration in model variance by proper data labeling. We demonstrate the efficacy of the proposed treatment of MFHMMs by examining two challenging WR scenarios, and show that the application of active learning, which is facilitated by our VB approach, allows for a significant reduction of the MFHMM training costs.
doi_str_mv 10.1109/TCSVT.2012.2189795
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_26136500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6164251</ieee_id><sourcerecordid>2702239131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-31fff672a6739db6983289bf8886e2e8e88740f58a32de24d9dce79fd23f5d13</originalsourceid><addsrcrecordid>eNpd0FFP2zAQB_BoAmlQ9gW2F0vTJF5S7HOc2I9bBQOpFRJk3WNk4jMyuDGzk6F--7m04mFPdzr_7iT_i-Izo3PGqLpoF_frdg6UwRyYVI0SH4oTJoQsAag4yj0VrJTAxMfiNKUnSlklq-ak8GuXJu3J7xCfrQ-v5A778Di40YWB_EpueCSarHV0ejfJ8IfeYnJ6IG1EPW5wGEmwZDX50aUxjzbkakpoyLUzBgey0vE5_CWrYNCns-LYap_w06HOivbqsl1cl8vbnzeL78uy50KOJWfW2roBXTdcmYdaSQ5SPVgpZY2AEqVsKmqF1BwMQmWU6bFR1gC3wjA-K873Z19i-DNhGruNSz16rwcMU-oY5ZLTSqkq06__0acwxfzPnQLOFFSyyQr2qo8hpYi2e4luo-M2o26Xf_eWf7fLvzvkn5e-HU7r1Gtvox56l943oWa8FpRm92XvHCK-P9esrkAw_g_obI7l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023192487</pqid></control><display><type>article</type><title>Visual Workflow Recognition Using a Variational Bayesian Treatment of Multistream Fused Hidden Markov Models</title><source>IEEE Electronic Library (IEL)</source><creator>Chatzis, S. P. ; Kosmopoulos, D.</creator><creatorcontrib>Chatzis, S. P. ; Kosmopoulos, D.</creatorcontrib><description>In this paper, we provide a variational Bayesian (VB) treatment of multistream fused hidden Markov models (MFHMMs), and apply it in the context of active learning-based visual workflow recognition (WR). Contrary to training methods yielding point estimates, such as maximum likelihood or maximum a posteriori training, the VB approach provides an estimate of the posterior distribution over the MFHMM parameters. As a result, our approach provides an elegant solution toward the amelioration of the overfitting issues of point estimate-based methods. Additionally, it provides a measure of confidence in the accuracy of the learned model, thus allowing for the easy and cost-effective utilization of active learning in the context of MFHMMs. Two alternative active learning algorithms are considered in this paper: query by committee, which selects unlabeled data that minimize the classification variance, and a maximum information gain method that aims to maximize the alteration in model variance by proper data labeling. We demonstrate the efficacy of the proposed treatment of MFHMMs by examining two challenging WR scenarios, and show that the application of active learning, which is facilitated by our VB approach, allows for a significant reduction of the MFHMM training costs.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2012.2189795</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Active learning ; Applied sciences ; Bayesian methods ; Computational modeling ; Confidence intervals ; Couplings ; Data models ; Estimates ; Exact sciences and technology ; Hidden Markov models ; Image processing ; Information, signal and communications theory ; Learning ; Mathematical models ; multistream fusion ; Recognition ; Sensors ; Signal processing ; Studies ; Teaching methods ; Telecommunications and information theory ; Training ; Variance ; Workflow ; workflow recognition</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2012-07, Vol.22 (7), p.1076-1086</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-31fff672a6739db6983289bf8886e2e8e88740f58a32de24d9dce79fd23f5d13</citedby><cites>FETCH-LOGICAL-c358t-31fff672a6739db6983289bf8886e2e8e88740f58a32de24d9dce79fd23f5d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6164251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6164251$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26136500$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatzis, S. P.</creatorcontrib><creatorcontrib>Kosmopoulos, D.</creatorcontrib><title>Visual Workflow Recognition Using a Variational Bayesian Treatment of Multistream Fused Hidden Markov Models</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we provide a variational Bayesian (VB) treatment of multistream fused hidden Markov models (MFHMMs), and apply it in the context of active learning-based visual workflow recognition (WR). Contrary to training methods yielding point estimates, such as maximum likelihood or maximum a posteriori training, the VB approach provides an estimate of the posterior distribution over the MFHMM parameters. As a result, our approach provides an elegant solution toward the amelioration of the overfitting issues of point estimate-based methods. Additionally, it provides a measure of confidence in the accuracy of the learned model, thus allowing for the easy and cost-effective utilization of active learning in the context of MFHMMs. Two alternative active learning algorithms are considered in this paper: query by committee, which selects unlabeled data that minimize the classification variance, and a maximum information gain method that aims to maximize the alteration in model variance by proper data labeling. We demonstrate the efficacy of the proposed treatment of MFHMMs by examining two challenging WR scenarios, and show that the application of active learning, which is facilitated by our VB approach, allows for a significant reduction of the MFHMM training costs.</description><subject>Active learning</subject><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Computational modeling</subject><subject>Confidence intervals</subject><subject>Couplings</subject><subject>Data models</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>multistream fusion</subject><subject>Recognition</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Studies</subject><subject>Teaching methods</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Variance</subject><subject>Workflow</subject><subject>workflow recognition</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0FFP2zAQB_BoAmlQ9gW2F0vTJF5S7HOc2I9bBQOpFRJk3WNk4jMyuDGzk6F--7m04mFPdzr_7iT_i-Izo3PGqLpoF_frdg6UwRyYVI0SH4oTJoQsAag4yj0VrJTAxMfiNKUnSlklq-ak8GuXJu3J7xCfrQ-v5A778Di40YWB_EpueCSarHV0ejfJ8IfeYnJ6IG1EPW5wGEmwZDX50aUxjzbkakpoyLUzBgey0vE5_CWrYNCns-LYap_w06HOivbqsl1cl8vbnzeL78uy50KOJWfW2roBXTdcmYdaSQ5SPVgpZY2AEqVsKmqF1BwMQmWU6bFR1gC3wjA-K873Z19i-DNhGruNSz16rwcMU-oY5ZLTSqkq06__0acwxfzPnQLOFFSyyQr2qo8hpYi2e4luo-M2o26Xf_eWf7fLvzvkn5e-HU7r1Gtvox56l943oWa8FpRm92XvHCK-P9esrkAw_g_obI7l</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Chatzis, S. P.</creator><creator>Kosmopoulos, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120701</creationdate><title>Visual Workflow Recognition Using a Variational Bayesian Treatment of Multistream Fused Hidden Markov Models</title><author>Chatzis, S. P. ; Kosmopoulos, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-31fff672a6739db6983289bf8886e2e8e88740f58a32de24d9dce79fd23f5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active learning</topic><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Computational modeling</topic><topic>Confidence intervals</topic><topic>Couplings</topic><topic>Data models</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>multistream fusion</topic><topic>Recognition</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Studies</topic><topic>Teaching methods</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Variance</topic><topic>Workflow</topic><topic>workflow recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatzis, S. P.</creatorcontrib><creatorcontrib>Kosmopoulos, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chatzis, S. P.</au><au>Kosmopoulos, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Workflow Recognition Using a Variational Bayesian Treatment of Multistream Fused Hidden Markov Models</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>22</volume><issue>7</issue><spage>1076</spage><epage>1086</epage><pages>1076-1086</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we provide a variational Bayesian (VB) treatment of multistream fused hidden Markov models (MFHMMs), and apply it in the context of active learning-based visual workflow recognition (WR). Contrary to training methods yielding point estimates, such as maximum likelihood or maximum a posteriori training, the VB approach provides an estimate of the posterior distribution over the MFHMM parameters. As a result, our approach provides an elegant solution toward the amelioration of the overfitting issues of point estimate-based methods. Additionally, it provides a measure of confidence in the accuracy of the learned model, thus allowing for the easy and cost-effective utilization of active learning in the context of MFHMMs. Two alternative active learning algorithms are considered in this paper: query by committee, which selects unlabeled data that minimize the classification variance, and a maximum information gain method that aims to maximize the alteration in model variance by proper data labeling. We demonstrate the efficacy of the proposed treatment of MFHMMs by examining two challenging WR scenarios, and show that the application of active learning, which is facilitated by our VB approach, allows for a significant reduction of the MFHMM training costs.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2012.2189795</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2012-07, Vol.22 (7), p.1076-1086
issn 1051-8215
1558-2205
language eng
recordid cdi_pascalfrancis_primary_26136500
source IEEE Electronic Library (IEL)
subjects Active learning
Applied sciences
Bayesian methods
Computational modeling
Confidence intervals
Couplings
Data models
Estimates
Exact sciences and technology
Hidden Markov models
Image processing
Information, signal and communications theory
Learning
Mathematical models
multistream fusion
Recognition
Sensors
Signal processing
Studies
Teaching methods
Telecommunications and information theory
Training
Variance
Workflow
workflow recognition
title Visual Workflow Recognition Using a Variational Bayesian Treatment of Multistream Fused Hidden Markov Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Workflow%20Recognition%20Using%20a%20Variational%20Bayesian%20Treatment%20of%20Multistream%20Fused%20Hidden%20Markov%20Models&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Chatzis,%20S.%20P.&rft.date=2012-07-01&rft.volume=22&rft.issue=7&rft.spage=1076&rft.epage=1086&rft.pages=1076-1086&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2012.2189795&rft_dat=%3Cproquest_RIE%3E2702239131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023192487&rft_id=info:pmid/&rft_ieee_id=6164251&rfr_iscdi=true