A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay

In this paper, we propose a method for encoding continuous-time Gaussian signals subject to a usual data rate constraint and, more importantly, a reconstruction delay constraint. We first apply a Karhunen-Loève decomposition to reparameterize the continuous-time signal as a discrete sequence of vec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2012-06, Vol.60 (6), p.3052-3064
Hauptverfasser: Marelli, D., Mahata, K., Minyue Fu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3064
container_issue 6
container_start_page 3052
container_title IEEE transactions on signal processing
container_volume 60
creator Marelli, D.
Mahata, K.
Minyue Fu
description In this paper, we propose a method for encoding continuous-time Gaussian signals subject to a usual data rate constraint and, more importantly, a reconstruction delay constraint. We first apply a Karhunen-Loève decomposition to reparameterize the continuous-time signal as a discrete sequence of vectors. We then study the optimal recursive quantization of this sequence of vectors. Since the optimal scheme turns out to have a very cumbersome design, we consider a simplified method, for which a numerical example suggests that the incurred performance loss is negligible. In this simplified method, we first build a state space model for the vector sequence and then use Bayesian tracking to sequentially encode each vector. The tracking task is performed using particle filtering. Numerical experiments show that the proposed approach offers visible advantages over other available approaches, especially when the reconstruction delay is small.
doi_str_mv 10.1109/TSP.2012.2190064
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_25949223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6165381</ieee_id><sourcerecordid>25949223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f2a4b67160f361cd55bb3e007b00ec0333b9885cd9fccd358a7f843ee5ebaae53</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFb3gpvZuEx985VklqW2VSgqtqLgIkwmb3SknZRMivbfm9LS1bvwzr2LQ8g1gwFjoO8W85cBB8YHnGmAVJ6QHtOSJSCz9LTLoESi8uzjnFzE-APApNRpj3wO6RP-0nGwdYUNdXVDR3VofdjUm5gs_Arp1Gxi9CbQuf8KZhnpu2-_6cT_YUVfTYvUhC6grUNsm41tfR3oPS7N9pKcuY7Hq8Ptk7fJeDF6SGbP08fRcJZYrkWbOG5kmWYsBSdSZiulylIgQFYCoAUhRKnzXNlKO2sroXKTuVwKRIWlMahEn8B-1zZ1jA26Yt34lWm2BYNiJ6fo5BQ7OcVBTle53VfWJlqzdI0J1sdjjystNeei4272nEfE4ztlqRI5E_8pDG4C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay</title><source>IEEE Electronic Library (IEL)</source><creator>Marelli, D. ; Mahata, K. ; Minyue Fu</creator><creatorcontrib>Marelli, D. ; Mahata, K. ; Minyue Fu</creatorcontrib><description>In this paper, we propose a method for encoding continuous-time Gaussian signals subject to a usual data rate constraint and, more importantly, a reconstruction delay constraint. We first apply a Karhunen-Loève decomposition to reparameterize the continuous-time signal as a discrete sequence of vectors. We then study the optimal recursive quantization of this sequence of vectors. Since the optimal scheme turns out to have a very cumbersome design, we consider a simplified method, for which a numerical example suggests that the incurred performance loss is negligible. In this simplified method, we first build a state space model for the vector sequence and then use Bayesian tracking to sequentially encode each vector. The tracking task is performed using particle filtering. Numerical experiments show that the proposed approach offers visible advantages over other available approaches, especially when the reconstruction delay is small.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2012.2190064</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bayesian methods ; Coding, codes ; continuous-time signals ; Delay ; Detection, estimation, filtering, equalization, prediction ; Dictionaries ; Distortion ; Educational institutions ; Encoding ; Exact sciences and technology ; Information, signal and communications theory ; particle filters ; predictive coding ; Quantization ; Sampling, quantization ; Signal and communications theory ; Signal, noise ; state-space methods ; Telecommunications and information theory ; transform coding ; Vectors</subject><ispartof>IEEE transactions on signal processing, 2012-06, Vol.60 (6), p.3052-3064</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f2a4b67160f361cd55bb3e007b00ec0333b9885cd9fccd358a7f843ee5ebaae53</citedby><cites>FETCH-LOGICAL-c293t-f2a4b67160f361cd55bb3e007b00ec0333b9885cd9fccd358a7f843ee5ebaae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6165381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6165381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25949223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marelli, D.</creatorcontrib><creatorcontrib>Mahata, K.</creatorcontrib><creatorcontrib>Minyue Fu</creatorcontrib><title>A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, we propose a method for encoding continuous-time Gaussian signals subject to a usual data rate constraint and, more importantly, a reconstruction delay constraint. We first apply a Karhunen-Loève decomposition to reparameterize the continuous-time signal as a discrete sequence of vectors. We then study the optimal recursive quantization of this sequence of vectors. Since the optimal scheme turns out to have a very cumbersome design, we consider a simplified method, for which a numerical example suggests that the incurred performance loss is negligible. In this simplified method, we first build a state space model for the vector sequence and then use Bayesian tracking to sequentially encode each vector. The tracking task is performed using particle filtering. Numerical experiments show that the proposed approach offers visible advantages over other available approaches, especially when the reconstruction delay is small.</description><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Coding, codes</subject><subject>continuous-time signals</subject><subject>Delay</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dictionaries</subject><subject>Distortion</subject><subject>Educational institutions</subject><subject>Encoding</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>particle filters</subject><subject>predictive coding</subject><subject>Quantization</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>state-space methods</subject><subject>Telecommunications and information theory</subject><subject>transform coding</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFb3gpvZuEx985VklqW2VSgqtqLgIkwmb3SknZRMivbfm9LS1bvwzr2LQ8g1gwFjoO8W85cBB8YHnGmAVJ6QHtOSJSCz9LTLoESi8uzjnFzE-APApNRpj3wO6RP-0nGwdYUNdXVDR3VofdjUm5gs_Arp1Gxi9CbQuf8KZhnpu2-_6cT_YUVfTYvUhC6grUNsm41tfR3oPS7N9pKcuY7Hq8Ptk7fJeDF6SGbP08fRcJZYrkWbOG5kmWYsBSdSZiulylIgQFYCoAUhRKnzXNlKO2sroXKTuVwKRIWlMahEn8B-1zZ1jA26Yt34lWm2BYNiJ6fo5BQ7OcVBTle53VfWJlqzdI0J1sdjjystNeei4272nEfE4ztlqRI5E_8pDG4C</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Marelli, D.</creator><creator>Mahata, K.</creator><creator>Minyue Fu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120601</creationdate><title>A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay</title><author>Marelli, D. ; Mahata, K. ; Minyue Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f2a4b67160f361cd55bb3e007b00ec0333b9885cd9fccd358a7f843ee5ebaae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Coding, codes</topic><topic>continuous-time signals</topic><topic>Delay</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dictionaries</topic><topic>Distortion</topic><topic>Educational institutions</topic><topic>Encoding</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>particle filters</topic><topic>predictive coding</topic><topic>Quantization</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>state-space methods</topic><topic>Telecommunications and information theory</topic><topic>transform coding</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marelli, D.</creatorcontrib><creatorcontrib>Mahata, K.</creatorcontrib><creatorcontrib>Minyue Fu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marelli, D.</au><au>Mahata, K.</au><au>Minyue Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>60</volume><issue>6</issue><spage>3052</spage><epage>3064</epage><pages>3052-3064</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, we propose a method for encoding continuous-time Gaussian signals subject to a usual data rate constraint and, more importantly, a reconstruction delay constraint. We first apply a Karhunen-Loève decomposition to reparameterize the continuous-time signal as a discrete sequence of vectors. We then study the optimal recursive quantization of this sequence of vectors. Since the optimal scheme turns out to have a very cumbersome design, we consider a simplified method, for which a numerical example suggests that the incurred performance loss is negligible. In this simplified method, we first build a state space model for the vector sequence and then use Bayesian tracking to sequentially encode each vector. The tracking task is performed using particle filtering. Numerical experiments show that the proposed approach offers visible advantages over other available approaches, especially when the reconstruction delay is small.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2012.2190064</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2012-06, Vol.60 (6), p.3052-3064
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_25949223
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bayesian methods
Coding, codes
continuous-time signals
Delay
Detection, estimation, filtering, equalization, prediction
Dictionaries
Distortion
Educational institutions
Encoding
Exact sciences and technology
Information, signal and communications theory
particle filters
predictive coding
Quantization
Sampling, quantization
Signal and communications theory
Signal, noise
state-space methods
Telecommunications and information theory
transform coding
Vectors
title A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Encoder%20for%20Continuous-Time%20Gaussian%20Signals%20With%20Fixed%20Rate%20and%20Reconstruction%20Delay&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Marelli,%20D.&rft.date=2012-06-01&rft.volume=60&rft.issue=6&rft.spage=3052&rft.epage=3064&rft.pages=3052-3064&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2012.2190064&rft_dat=%3Cpascalfrancis_RIE%3E25949223%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6165381&rfr_iscdi=true