A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay
In this paper, we propose a method for encoding continuous-time Gaussian signals subject to a usual data rate constraint and, more importantly, a reconstruction delay constraint. We first apply a Karhunen-Loève decomposition to reparameterize the continuous-time signal as a discrete sequence of vec...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2012-06, Vol.60 (6), p.3052-3064 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3064 |
---|---|
container_issue | 6 |
container_start_page | 3052 |
container_title | IEEE transactions on signal processing |
container_volume | 60 |
creator | Marelli, D. Mahata, K. Minyue Fu |
description | In this paper, we propose a method for encoding continuous-time Gaussian signals subject to a usual data rate constraint and, more importantly, a reconstruction delay constraint. We first apply a Karhunen-Loève decomposition to reparameterize the continuous-time signal as a discrete sequence of vectors. We then study the optimal recursive quantization of this sequence of vectors. Since the optimal scheme turns out to have a very cumbersome design, we consider a simplified method, for which a numerical example suggests that the incurred performance loss is negligible. In this simplified method, we first build a state space model for the vector sequence and then use Bayesian tracking to sequentially encode each vector. The tracking task is performed using particle filtering. Numerical experiments show that the proposed approach offers visible advantages over other available approaches, especially when the reconstruction delay is small. |
doi_str_mv | 10.1109/TSP.2012.2190064 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_25949223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6165381</ieee_id><sourcerecordid>25949223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f2a4b67160f361cd55bb3e007b00ec0333b9885cd9fccd358a7f843ee5ebaae53</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFb3gpvZuEx985VklqW2VSgqtqLgIkwmb3SknZRMivbfm9LS1bvwzr2LQ8g1gwFjoO8W85cBB8YHnGmAVJ6QHtOSJSCz9LTLoESi8uzjnFzE-APApNRpj3wO6RP-0nGwdYUNdXVDR3VofdjUm5gs_Arp1Gxi9CbQuf8KZhnpu2-_6cT_YUVfTYvUhC6grUNsm41tfR3oPS7N9pKcuY7Hq8Ptk7fJeDF6SGbP08fRcJZYrkWbOG5kmWYsBSdSZiulylIgQFYCoAUhRKnzXNlKO2sroXKTuVwKRIWlMahEn8B-1zZ1jA26Yt34lWm2BYNiJ6fo5BQ7OcVBTle53VfWJlqzdI0J1sdjjystNeei4272nEfE4ztlqRI5E_8pDG4C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay</title><source>IEEE Electronic Library (IEL)</source><creator>Marelli, D. ; Mahata, K. ; Minyue Fu</creator><creatorcontrib>Marelli, D. ; Mahata, K. ; Minyue Fu</creatorcontrib><description>In this paper, we propose a method for encoding continuous-time Gaussian signals subject to a usual data rate constraint and, more importantly, a reconstruction delay constraint. We first apply a Karhunen-Loève decomposition to reparameterize the continuous-time signal as a discrete sequence of vectors. We then study the optimal recursive quantization of this sequence of vectors. Since the optimal scheme turns out to have a very cumbersome design, we consider a simplified method, for which a numerical example suggests that the incurred performance loss is negligible. In this simplified method, we first build a state space model for the vector sequence and then use Bayesian tracking to sequentially encode each vector. The tracking task is performed using particle filtering. Numerical experiments show that the proposed approach offers visible advantages over other available approaches, especially when the reconstruction delay is small.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2012.2190064</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bayesian methods ; Coding, codes ; continuous-time signals ; Delay ; Detection, estimation, filtering, equalization, prediction ; Dictionaries ; Distortion ; Educational institutions ; Encoding ; Exact sciences and technology ; Information, signal and communications theory ; particle filters ; predictive coding ; Quantization ; Sampling, quantization ; Signal and communications theory ; Signal, noise ; state-space methods ; Telecommunications and information theory ; transform coding ; Vectors</subject><ispartof>IEEE transactions on signal processing, 2012-06, Vol.60 (6), p.3052-3064</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f2a4b67160f361cd55bb3e007b00ec0333b9885cd9fccd358a7f843ee5ebaae53</citedby><cites>FETCH-LOGICAL-c293t-f2a4b67160f361cd55bb3e007b00ec0333b9885cd9fccd358a7f843ee5ebaae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6165381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6165381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25949223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marelli, D.</creatorcontrib><creatorcontrib>Mahata, K.</creatorcontrib><creatorcontrib>Minyue Fu</creatorcontrib><title>A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, we propose a method for encoding continuous-time Gaussian signals subject to a usual data rate constraint and, more importantly, a reconstruction delay constraint. We first apply a Karhunen-Loève decomposition to reparameterize the continuous-time signal as a discrete sequence of vectors. We then study the optimal recursive quantization of this sequence of vectors. Since the optimal scheme turns out to have a very cumbersome design, we consider a simplified method, for which a numerical example suggests that the incurred performance loss is negligible. In this simplified method, we first build a state space model for the vector sequence and then use Bayesian tracking to sequentially encode each vector. The tracking task is performed using particle filtering. Numerical experiments show that the proposed approach offers visible advantages over other available approaches, especially when the reconstruction delay is small.</description><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Coding, codes</subject><subject>continuous-time signals</subject><subject>Delay</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dictionaries</subject><subject>Distortion</subject><subject>Educational institutions</subject><subject>Encoding</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>particle filters</subject><subject>predictive coding</subject><subject>Quantization</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>state-space methods</subject><subject>Telecommunications and information theory</subject><subject>transform coding</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFb3gpvZuEx985VklqW2VSgqtqLgIkwmb3SknZRMivbfm9LS1bvwzr2LQ8g1gwFjoO8W85cBB8YHnGmAVJ6QHtOSJSCz9LTLoESi8uzjnFzE-APApNRpj3wO6RP-0nGwdYUNdXVDR3VofdjUm5gs_Arp1Gxi9CbQuf8KZhnpu2-_6cT_YUVfTYvUhC6grUNsm41tfR3oPS7N9pKcuY7Hq8Ptk7fJeDF6SGbP08fRcJZYrkWbOG5kmWYsBSdSZiulylIgQFYCoAUhRKnzXNlKO2sroXKTuVwKRIWlMahEn8B-1zZ1jA26Yt34lWm2BYNiJ6fo5BQ7OcVBTle53VfWJlqzdI0J1sdjjystNeei4272nEfE4ztlqRI5E_8pDG4C</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Marelli, D.</creator><creator>Mahata, K.</creator><creator>Minyue Fu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120601</creationdate><title>A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay</title><author>Marelli, D. ; Mahata, K. ; Minyue Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f2a4b67160f361cd55bb3e007b00ec0333b9885cd9fccd358a7f843ee5ebaae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Coding, codes</topic><topic>continuous-time signals</topic><topic>Delay</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dictionaries</topic><topic>Distortion</topic><topic>Educational institutions</topic><topic>Encoding</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>particle filters</topic><topic>predictive coding</topic><topic>Quantization</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>state-space methods</topic><topic>Telecommunications and information theory</topic><topic>transform coding</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marelli, D.</creatorcontrib><creatorcontrib>Mahata, K.</creatorcontrib><creatorcontrib>Minyue Fu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marelli, D.</au><au>Mahata, K.</au><au>Minyue Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>60</volume><issue>6</issue><spage>3052</spage><epage>3064</epage><pages>3052-3064</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, we propose a method for encoding continuous-time Gaussian signals subject to a usual data rate constraint and, more importantly, a reconstruction delay constraint. We first apply a Karhunen-Loève decomposition to reparameterize the continuous-time signal as a discrete sequence of vectors. We then study the optimal recursive quantization of this sequence of vectors. Since the optimal scheme turns out to have a very cumbersome design, we consider a simplified method, for which a numerical example suggests that the incurred performance loss is negligible. In this simplified method, we first build a state space model for the vector sequence and then use Bayesian tracking to sequentially encode each vector. The tracking task is performed using particle filtering. Numerical experiments show that the proposed approach offers visible advantages over other available approaches, especially when the reconstruction delay is small.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2012.2190064</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2012-06, Vol.60 (6), p.3052-3064 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_pascalfrancis_primary_25949223 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Bayesian methods Coding, codes continuous-time signals Delay Detection, estimation, filtering, equalization, prediction Dictionaries Distortion Educational institutions Encoding Exact sciences and technology Information, signal and communications theory particle filters predictive coding Quantization Sampling, quantization Signal and communications theory Signal, noise state-space methods Telecommunications and information theory transform coding Vectors |
title | A New Encoder for Continuous-Time Gaussian Signals With Fixed Rate and Reconstruction Delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Encoder%20for%20Continuous-Time%20Gaussian%20Signals%20With%20Fixed%20Rate%20and%20Reconstruction%20Delay&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Marelli,%20D.&rft.date=2012-06-01&rft.volume=60&rft.issue=6&rft.spage=3052&rft.epage=3064&rft.pages=3052-3064&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2012.2190064&rft_dat=%3Cpascalfrancis_RIE%3E25949223%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6165381&rfr_iscdi=true |