Matching admissible G2 Hermite data by a biarc-based subdivision scheme
Spirals are curves with single-signed, monotone increasing or decreasing curvature. A spiral can only interpolate certain G2 Hermite data that is referred to as admissible G2 Hermite data. In this paper we propose a biarc-based subdivision scheme that can generate a planar spiral matching an arbitra...
Gespeichert in:
Veröffentlicht in: | Computer aided geometric design 2012-08, Vol.29 (6), p.363-378 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 6 |
container_start_page | 363 |
container_title | Computer aided geometric design |
container_volume | 29 |
creator | Deng, Chongyang Ma, Weiyin |
description | Spirals are curves with single-signed, monotone increasing or decreasing curvature. A spiral can only interpolate certain G2 Hermite data that is referred to as admissible G2 Hermite data. In this paper we propose a biarc-based subdivision scheme that can generate a planar spiral matching an arbitrary set of given admissible G2 Hermite data, including the case that the curvature at one end is zero. An attractive property of the proposed scheme is that the resulting subdivision spirals are also offset curves if the given input data are offsets of admissible G2 Hermite data. A detailed proof of the convergence and smoothness analysis of the scheme is also provided. Several examples are given to demonstrate some excellent properties and practical applications of the proposed scheme.
► This article presents a geometry driven interpolating subdivision scheme. ► The scheme interpolates an arbitrary set of planar admissible G2 Hermite data. ► It produces a global G2 spiral spline curve. ► It easily generates an exact offset curve of the limit spiral spline curve with the same subdivision scheme. |
doi_str_mv | 10.1016/j.cagd.2012.03.010 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25928919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167839612000362</els_id><sourcerecordid>S0167839612000362</sourcerecordid><originalsourceid>FETCH-LOGICAL-e839-762275d7166e8968ab7e9ce66501109ff7549f684dada8bc13057fa445bd7f93</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EEqXwB5i8MCb4I7FjiQVV0CIVMcBuPdsvrasmrexQqf-eRGV5dzm69-kQ8shZyRlXz7vSwyaUgnFRMlkyzq7IjDfaFEJKcU1mI6SLRhp1S-5y3jHGBDdqRpafMPht7DcUQhdzjm6PdCnoClMXB6QBBqDuTMcTIfnCQcZA868L8RRzPPQ0-y12eE9uWthnfPjPOfl-f_tZrIr11_Jj8boucBwvtBJC10FzpbAxqgGn0XhUqmacM9O2uq5Mq5oqQIDGeS5ZrVuoqtoF3Ro5J0-X1iNkD_s2Qe9jtscUO0hnK2ojGsMn7uXC4fjKKWKy2UfsPYaY0A82HKLlzE7q7M5O6uykzjJpR3XyD51hYlA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Matching admissible G2 Hermite data by a biarc-based subdivision scheme</title><source>Elsevier ScienceDirect Journals</source><creator>Deng, Chongyang ; Ma, Weiyin</creator><creatorcontrib>Deng, Chongyang ; Ma, Weiyin</creatorcontrib><description>Spirals are curves with single-signed, monotone increasing or decreasing curvature. A spiral can only interpolate certain G2 Hermite data that is referred to as admissible G2 Hermite data. In this paper we propose a biarc-based subdivision scheme that can generate a planar spiral matching an arbitrary set of given admissible G2 Hermite data, including the case that the curvature at one end is zero. An attractive property of the proposed scheme is that the resulting subdivision spirals are also offset curves if the given input data are offsets of admissible G2 Hermite data. A detailed proof of the convergence and smoothness analysis of the scheme is also provided. Several examples are given to demonstrate some excellent properties and practical applications of the proposed scheme.
► This article presents a geometry driven interpolating subdivision scheme. ► The scheme interpolates an arbitrary set of planar admissible G2 Hermite data. ► It produces a global G2 spiral spline curve. ► It easily generates an exact offset curve of the limit spiral spline curve with the same subdivision scheme.</description><identifier>ISSN: 0167-8396</identifier><identifier>EISSN: 1879-2332</identifier><identifier>DOI: 10.1016/j.cagd.2012.03.010</identifier><identifier>CODEN: CAGDEX</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Admissible [formula omitted] Hermite interpolation ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Geometry driven subdivision ; Mathematics ; Monotone curvature ; Nonlinear subdivision scheme ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Pattern recognition. Digital image processing. Computational geometry ; Sciences and techniques of general use ; Shape preserving ; Spiral</subject><ispartof>Computer aided geometric design, 2012-08, Vol.29 (6), p.363-378</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167839612000362$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25928919$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Chongyang</creatorcontrib><creatorcontrib>Ma, Weiyin</creatorcontrib><title>Matching admissible G2 Hermite data by a biarc-based subdivision scheme</title><title>Computer aided geometric design</title><description>Spirals are curves with single-signed, monotone increasing or decreasing curvature. A spiral can only interpolate certain G2 Hermite data that is referred to as admissible G2 Hermite data. In this paper we propose a biarc-based subdivision scheme that can generate a planar spiral matching an arbitrary set of given admissible G2 Hermite data, including the case that the curvature at one end is zero. An attractive property of the proposed scheme is that the resulting subdivision spirals are also offset curves if the given input data are offsets of admissible G2 Hermite data. A detailed proof of the convergence and smoothness analysis of the scheme is also provided. Several examples are given to demonstrate some excellent properties and practical applications of the proposed scheme.
► This article presents a geometry driven interpolating subdivision scheme. ► The scheme interpolates an arbitrary set of planar admissible G2 Hermite data. ► It produces a global G2 spiral spline curve. ► It easily generates an exact offset curve of the limit spiral spline curve with the same subdivision scheme.</description><subject>Admissible [formula omitted] Hermite interpolation</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Geometry driven subdivision</subject><subject>Mathematics</subject><subject>Monotone curvature</subject><subject>Nonlinear subdivision scheme</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sciences and techniques of general use</subject><subject>Shape preserving</subject><subject>Spiral</subject><issn>0167-8396</issn><issn>1879-2332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EEqXwB5i8MCb4I7FjiQVV0CIVMcBuPdsvrasmrexQqf-eRGV5dzm69-kQ8shZyRlXz7vSwyaUgnFRMlkyzq7IjDfaFEJKcU1mI6SLRhp1S-5y3jHGBDdqRpafMPht7DcUQhdzjm6PdCnoClMXB6QBBqDuTMcTIfnCQcZA868L8RRzPPQ0-y12eE9uWthnfPjPOfl-f_tZrIr11_Jj8boucBwvtBJC10FzpbAxqgGn0XhUqmacM9O2uq5Mq5oqQIDGeS5ZrVuoqtoF3Ro5J0-X1iNkD_s2Qe9jtscUO0hnK2ojGsMn7uXC4fjKKWKy2UfsPYaY0A82HKLlzE7q7M5O6uykzjJpR3XyD51hYlA</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Deng, Chongyang</creator><creator>Ma, Weiyin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>201208</creationdate><title>Matching admissible G2 Hermite data by a biarc-based subdivision scheme</title><author>Deng, Chongyang ; Ma, Weiyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e839-762275d7166e8968ab7e9ce66501109ff7549f684dada8bc13057fa445bd7f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Admissible [formula omitted] Hermite interpolation</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Geometry driven subdivision</topic><topic>Mathematics</topic><topic>Monotone curvature</topic><topic>Nonlinear subdivision scheme</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sciences and techniques of general use</topic><topic>Shape preserving</topic><topic>Spiral</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Chongyang</creatorcontrib><creatorcontrib>Ma, Weiyin</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Computer aided geometric design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Chongyang</au><au>Ma, Weiyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matching admissible G2 Hermite data by a biarc-based subdivision scheme</atitle><jtitle>Computer aided geometric design</jtitle><date>2012-08</date><risdate>2012</risdate><volume>29</volume><issue>6</issue><spage>363</spage><epage>378</epage><pages>363-378</pages><issn>0167-8396</issn><eissn>1879-2332</eissn><coden>CAGDEX</coden><abstract>Spirals are curves with single-signed, monotone increasing or decreasing curvature. A spiral can only interpolate certain G2 Hermite data that is referred to as admissible G2 Hermite data. In this paper we propose a biarc-based subdivision scheme that can generate a planar spiral matching an arbitrary set of given admissible G2 Hermite data, including the case that the curvature at one end is zero. An attractive property of the proposed scheme is that the resulting subdivision spirals are also offset curves if the given input data are offsets of admissible G2 Hermite data. A detailed proof of the convergence and smoothness analysis of the scheme is also provided. Several examples are given to demonstrate some excellent properties and practical applications of the proposed scheme.
► This article presents a geometry driven interpolating subdivision scheme. ► The scheme interpolates an arbitrary set of planar admissible G2 Hermite data. ► It produces a global G2 spiral spline curve. ► It easily generates an exact offset curve of the limit spiral spline curve with the same subdivision scheme.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cagd.2012.03.010</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8396 |
ispartof | Computer aided geometric design, 2012-08, Vol.29 (6), p.363-378 |
issn | 0167-8396 1879-2332 |
language | eng |
recordid | cdi_pascalfrancis_primary_25928919 |
source | Elsevier ScienceDirect Journals |
subjects | Admissible [formula omitted] Hermite interpolation Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Geometry driven subdivision Mathematics Monotone curvature Nonlinear subdivision scheme Numerical analysis Numerical analysis. Scientific computation Numerical approximation Pattern recognition. Digital image processing. Computational geometry Sciences and techniques of general use Shape preserving Spiral |
title | Matching admissible G2 Hermite data by a biarc-based subdivision scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matching%20admissible%20G2%20Hermite%20data%20by%20a%20biarc-based%20subdivision%20scheme&rft.jtitle=Computer%20aided%20geometric%20design&rft.au=Deng,%20Chongyang&rft.date=2012-08&rft.volume=29&rft.issue=6&rft.spage=363&rft.epage=378&rft.pages=363-378&rft.issn=0167-8396&rft.eissn=1879-2332&rft.coden=CAGDEX&rft_id=info:doi/10.1016/j.cagd.2012.03.010&rft_dat=%3Celsevier_pasca%3ES0167839612000362%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167839612000362&rfr_iscdi=true |