Matching admissible G2 Hermite data by a biarc-based subdivision scheme

Spirals are curves with single-signed, monotone increasing or decreasing curvature. A spiral can only interpolate certain G2 Hermite data that is referred to as admissible G2 Hermite data. In this paper we propose a biarc-based subdivision scheme that can generate a planar spiral matching an arbitra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided geometric design 2012-08, Vol.29 (6), p.363-378
Hauptverfasser: Deng, Chongyang, Ma, Weiyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue 6
container_start_page 363
container_title Computer aided geometric design
container_volume 29
creator Deng, Chongyang
Ma, Weiyin
description Spirals are curves with single-signed, monotone increasing or decreasing curvature. A spiral can only interpolate certain G2 Hermite data that is referred to as admissible G2 Hermite data. In this paper we propose a biarc-based subdivision scheme that can generate a planar spiral matching an arbitrary set of given admissible G2 Hermite data, including the case that the curvature at one end is zero. An attractive property of the proposed scheme is that the resulting subdivision spirals are also offset curves if the given input data are offsets of admissible G2 Hermite data. A detailed proof of the convergence and smoothness analysis of the scheme is also provided. Several examples are given to demonstrate some excellent properties and practical applications of the proposed scheme. ► This article presents a geometry driven interpolating subdivision scheme. ► The scheme interpolates an arbitrary set of planar admissible G2 Hermite data. ► It produces a global G2 spiral spline curve. ► It easily generates an exact offset curve of the limit spiral spline curve with the same subdivision scheme.
doi_str_mv 10.1016/j.cagd.2012.03.010
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25928919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167839612000362</els_id><sourcerecordid>S0167839612000362</sourcerecordid><originalsourceid>FETCH-LOGICAL-e839-762275d7166e8968ab7e9ce66501109ff7549f684dada8bc13057fa445bd7f93</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EEqXwB5i8MCb4I7FjiQVV0CIVMcBuPdsvrasmrexQqf-eRGV5dzm69-kQ8shZyRlXz7vSwyaUgnFRMlkyzq7IjDfaFEJKcU1mI6SLRhp1S-5y3jHGBDdqRpafMPht7DcUQhdzjm6PdCnoClMXB6QBBqDuTMcTIfnCQcZA868L8RRzPPQ0-y12eE9uWthnfPjPOfl-f_tZrIr11_Jj8boucBwvtBJC10FzpbAxqgGn0XhUqmacM9O2uq5Mq5oqQIDGeS5ZrVuoqtoF3Ro5J0-X1iNkD_s2Qe9jtscUO0hnK2ojGsMn7uXC4fjKKWKy2UfsPYaY0A82HKLlzE7q7M5O6uykzjJpR3XyD51hYlA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Matching admissible G2 Hermite data by a biarc-based subdivision scheme</title><source>Elsevier ScienceDirect Journals</source><creator>Deng, Chongyang ; Ma, Weiyin</creator><creatorcontrib>Deng, Chongyang ; Ma, Weiyin</creatorcontrib><description>Spirals are curves with single-signed, monotone increasing or decreasing curvature. A spiral can only interpolate certain G2 Hermite data that is referred to as admissible G2 Hermite data. In this paper we propose a biarc-based subdivision scheme that can generate a planar spiral matching an arbitrary set of given admissible G2 Hermite data, including the case that the curvature at one end is zero. An attractive property of the proposed scheme is that the resulting subdivision spirals are also offset curves if the given input data are offsets of admissible G2 Hermite data. A detailed proof of the convergence and smoothness analysis of the scheme is also provided. Several examples are given to demonstrate some excellent properties and practical applications of the proposed scheme. ► This article presents a geometry driven interpolating subdivision scheme. ► The scheme interpolates an arbitrary set of planar admissible G2 Hermite data. ► It produces a global G2 spiral spline curve. ► It easily generates an exact offset curve of the limit spiral spline curve with the same subdivision scheme.</description><identifier>ISSN: 0167-8396</identifier><identifier>EISSN: 1879-2332</identifier><identifier>DOI: 10.1016/j.cagd.2012.03.010</identifier><identifier>CODEN: CAGDEX</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Admissible [formula omitted] Hermite interpolation ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Geometry driven subdivision ; Mathematics ; Monotone curvature ; Nonlinear subdivision scheme ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Pattern recognition. Digital image processing. Computational geometry ; Sciences and techniques of general use ; Shape preserving ; Spiral</subject><ispartof>Computer aided geometric design, 2012-08, Vol.29 (6), p.363-378</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167839612000362$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25928919$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Chongyang</creatorcontrib><creatorcontrib>Ma, Weiyin</creatorcontrib><title>Matching admissible G2 Hermite data by a biarc-based subdivision scheme</title><title>Computer aided geometric design</title><description>Spirals are curves with single-signed, monotone increasing or decreasing curvature. A spiral can only interpolate certain G2 Hermite data that is referred to as admissible G2 Hermite data. In this paper we propose a biarc-based subdivision scheme that can generate a planar spiral matching an arbitrary set of given admissible G2 Hermite data, including the case that the curvature at one end is zero. An attractive property of the proposed scheme is that the resulting subdivision spirals are also offset curves if the given input data are offsets of admissible G2 Hermite data. A detailed proof of the convergence and smoothness analysis of the scheme is also provided. Several examples are given to demonstrate some excellent properties and practical applications of the proposed scheme. ► This article presents a geometry driven interpolating subdivision scheme. ► The scheme interpolates an arbitrary set of planar admissible G2 Hermite data. ► It produces a global G2 spiral spline curve. ► It easily generates an exact offset curve of the limit spiral spline curve with the same subdivision scheme.</description><subject>Admissible [formula omitted] Hermite interpolation</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Geometry driven subdivision</subject><subject>Mathematics</subject><subject>Monotone curvature</subject><subject>Nonlinear subdivision scheme</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sciences and techniques of general use</subject><subject>Shape preserving</subject><subject>Spiral</subject><issn>0167-8396</issn><issn>1879-2332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EEqXwB5i8MCb4I7FjiQVV0CIVMcBuPdsvrasmrexQqf-eRGV5dzm69-kQ8shZyRlXz7vSwyaUgnFRMlkyzq7IjDfaFEJKcU1mI6SLRhp1S-5y3jHGBDdqRpafMPht7DcUQhdzjm6PdCnoClMXB6QBBqDuTMcTIfnCQcZA868L8RRzPPQ0-y12eE9uWthnfPjPOfl-f_tZrIr11_Jj8boucBwvtBJC10FzpbAxqgGn0XhUqmacM9O2uq5Mq5oqQIDGeS5ZrVuoqtoF3Ro5J0-X1iNkD_s2Qe9jtscUO0hnK2ojGsMn7uXC4fjKKWKy2UfsPYaY0A82HKLlzE7q7M5O6uykzjJpR3XyD51hYlA</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Deng, Chongyang</creator><creator>Ma, Weiyin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>201208</creationdate><title>Matching admissible G2 Hermite data by a biarc-based subdivision scheme</title><author>Deng, Chongyang ; Ma, Weiyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e839-762275d7166e8968ab7e9ce66501109ff7549f684dada8bc13057fa445bd7f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Admissible [formula omitted] Hermite interpolation</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Geometry driven subdivision</topic><topic>Mathematics</topic><topic>Monotone curvature</topic><topic>Nonlinear subdivision scheme</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sciences and techniques of general use</topic><topic>Shape preserving</topic><topic>Spiral</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Chongyang</creatorcontrib><creatorcontrib>Ma, Weiyin</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Computer aided geometric design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Chongyang</au><au>Ma, Weiyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matching admissible G2 Hermite data by a biarc-based subdivision scheme</atitle><jtitle>Computer aided geometric design</jtitle><date>2012-08</date><risdate>2012</risdate><volume>29</volume><issue>6</issue><spage>363</spage><epage>378</epage><pages>363-378</pages><issn>0167-8396</issn><eissn>1879-2332</eissn><coden>CAGDEX</coden><abstract>Spirals are curves with single-signed, monotone increasing or decreasing curvature. A spiral can only interpolate certain G2 Hermite data that is referred to as admissible G2 Hermite data. In this paper we propose a biarc-based subdivision scheme that can generate a planar spiral matching an arbitrary set of given admissible G2 Hermite data, including the case that the curvature at one end is zero. An attractive property of the proposed scheme is that the resulting subdivision spirals are also offset curves if the given input data are offsets of admissible G2 Hermite data. A detailed proof of the convergence and smoothness analysis of the scheme is also provided. Several examples are given to demonstrate some excellent properties and practical applications of the proposed scheme. ► This article presents a geometry driven interpolating subdivision scheme. ► The scheme interpolates an arbitrary set of planar admissible G2 Hermite data. ► It produces a global G2 spiral spline curve. ► It easily generates an exact offset curve of the limit spiral spline curve with the same subdivision scheme.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cagd.2012.03.010</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8396
ispartof Computer aided geometric design, 2012-08, Vol.29 (6), p.363-378
issn 0167-8396
1879-2332
language eng
recordid cdi_pascalfrancis_primary_25928919
source Elsevier ScienceDirect Journals
subjects Admissible [formula omitted] Hermite interpolation
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Geometry driven subdivision
Mathematics
Monotone curvature
Nonlinear subdivision scheme
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Pattern recognition. Digital image processing. Computational geometry
Sciences and techniques of general use
Shape preserving
Spiral
title Matching admissible G2 Hermite data by a biarc-based subdivision scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matching%20admissible%20G2%20Hermite%20data%20by%20a%20biarc-based%20subdivision%20scheme&rft.jtitle=Computer%20aided%20geometric%20design&rft.au=Deng,%20Chongyang&rft.date=2012-08&rft.volume=29&rft.issue=6&rft.spage=363&rft.epage=378&rft.pages=363-378&rft.issn=0167-8396&rft.eissn=1879-2332&rft.coden=CAGDEX&rft_id=info:doi/10.1016/j.cagd.2012.03.010&rft_dat=%3Celsevier_pasca%3ES0167839612000362%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167839612000362&rfr_iscdi=true