Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane

The comparative catalytic activity and coke resistance are examined in carbon dioxide reforming of methane over Ni/CeO2 nanorods (NR) and nanopolyhedra (NP). The Ni/CeO2–NR catalysts display more excellent catalytic activity and higher coke resistance compared with the Ni/CeO2–NP. The high resolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-05, Vol.116 (18), p.10009-10016
Hauptverfasser: Du, Xianjun, Zhang, Dengsong, Shi, Liyi, Gao, Ruihua, Zhang, Jianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10016
container_issue 18
container_start_page 10009
container_title Journal of physical chemistry. C
container_volume 116
creator Du, Xianjun
Zhang, Dengsong
Shi, Liyi
Gao, Ruihua
Zhang, Jianping
description The comparative catalytic activity and coke resistance are examined in carbon dioxide reforming of methane over Ni/CeO2 nanorods (NR) and nanopolyhedra (NP). The Ni/CeO2–NR catalysts display more excellent catalytic activity and higher coke resistance compared with the Ni/CeO2–NP. The high resolution transmission electron microscope reveals that the predominantly exposed planes are the unusually reactive {110} and {100} planes on the CeO2–NR rather than the stable {111} one on the CeO2–NP. The prepared samples were also characterized by X-ray diffraction, transmission electron microscopy, hydrogen temperature-programmed reduction, X-ray photoelectron spectroscopy, UV and visible Raman spectra, and oxygen temperature-programmed oxidation. The {110} and {100} planes show great superiority for the anchoring of Ni nanoparticles, which results in the existence of strong metal–support interaction effect (SMSI). The SMSI effect can be helpful to prevent sintering of Ni particles, which benefits to reduce the deactivation of catalytic activity. Besides, the oxygen vacancies and the mobility of lattice oxygen also show the morphology dependence. They can participate into the catalytic reaction and be beneficial to the activation of carbon deposition. In conclusion, the excellent catalytic activity and coke resistance of the Ni/CeO2–NR should be attributed to the SMSI effect and abundant oxygen vacancies.
doi_str_mv 10.1021/jp300543r
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25895371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b377989504</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-4d66e57edd08d86946e31203b9347f224103d96d50bb158825fa81d38ec0e30a3</originalsourceid><addsrcrecordid>eNpFUMlOwzAUtBBIlMKBP_CFY6iXOHGOKGWTuiAE58ixX1pXqR3ZrkT_nlQgOM3TvJnRaBC6peSeEkZnu4ETInIeztCEVpxlZS7E-d-dl5foKsbdqOGE8gnySx-Gre_95ojnMIAz4DRg3-FaJdUfk9X4LfgBQrIQT_zKzmpYM7xSzscUDjodwvjpfBgtofUOz63_sgbwO4zk3rrNybaEtFUOrtFFp_oIN784RZ9Pjx_1S7ZYP7_WD4tMMUpTlpuiAFGCMUQaWVR5AZwywtuK52XHWE4JN1VhBGlbKqRkolOSGi5BE-BE8Sm6-8kdVNSq74Jy2sZmCHavwrFhQlaCl_Rfp3Rsdv4Q3NiqoaQ5rdn8rcm_ARCOZzA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane</title><source>ACS Publications</source><creator>Du, Xianjun ; Zhang, Dengsong ; Shi, Liyi ; Gao, Ruihua ; Zhang, Jianping</creator><creatorcontrib>Du, Xianjun ; Zhang, Dengsong ; Shi, Liyi ; Gao, Ruihua ; Zhang, Jianping</creatorcontrib><description>The comparative catalytic activity and coke resistance are examined in carbon dioxide reforming of methane over Ni/CeO2 nanorods (NR) and nanopolyhedra (NP). The Ni/CeO2–NR catalysts display more excellent catalytic activity and higher coke resistance compared with the Ni/CeO2–NP. The high resolution transmission electron microscope reveals that the predominantly exposed planes are the unusually reactive {110} and {100} planes on the CeO2–NR rather than the stable {111} one on the CeO2–NP. The prepared samples were also characterized by X-ray diffraction, transmission electron microscopy, hydrogen temperature-programmed reduction, X-ray photoelectron spectroscopy, UV and visible Raman spectra, and oxygen temperature-programmed oxidation. The {110} and {100} planes show great superiority for the anchoring of Ni nanoparticles, which results in the existence of strong metal–support interaction effect (SMSI). The SMSI effect can be helpful to prevent sintering of Ni particles, which benefits to reduce the deactivation of catalytic activity. Besides, the oxygen vacancies and the mobility of lattice oxygen also show the morphology dependence. They can participate into the catalytic reaction and be beneficial to the activation of carbon deposition. In conclusion, the excellent catalytic activity and coke resistance of the Ni/CeO2–NR should be attributed to the SMSI effect and abundant oxygen vacancies.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp300543r</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Catalysis ; Catalysts: preparations and properties ; Chemistry ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; General and physical chemistry ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Other topics in nanoscale materials and structures ; Physics ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Thin film structure and morphology</subject><ispartof>Journal of physical chemistry. C, 2012-05, Vol.116 (18), p.10009-10016</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp300543r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp300543r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25895371$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Xianjun</creatorcontrib><creatorcontrib>Zhang, Dengsong</creatorcontrib><creatorcontrib>Shi, Liyi</creatorcontrib><creatorcontrib>Gao, Ruihua</creatorcontrib><creatorcontrib>Zhang, Jianping</creatorcontrib><title>Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The comparative catalytic activity and coke resistance are examined in carbon dioxide reforming of methane over Ni/CeO2 nanorods (NR) and nanopolyhedra (NP). The Ni/CeO2–NR catalysts display more excellent catalytic activity and higher coke resistance compared with the Ni/CeO2–NP. The high resolution transmission electron microscope reveals that the predominantly exposed planes are the unusually reactive {110} and {100} planes on the CeO2–NR rather than the stable {111} one on the CeO2–NP. The prepared samples were also characterized by X-ray diffraction, transmission electron microscopy, hydrogen temperature-programmed reduction, X-ray photoelectron spectroscopy, UV and visible Raman spectra, and oxygen temperature-programmed oxidation. The {110} and {100} planes show great superiority for the anchoring of Ni nanoparticles, which results in the existence of strong metal–support interaction effect (SMSI). The SMSI effect can be helpful to prevent sintering of Ni particles, which benefits to reduce the deactivation of catalytic activity. Besides, the oxygen vacancies and the mobility of lattice oxygen also show the morphology dependence. They can participate into the catalytic reaction and be beneficial to the activation of carbon deposition. In conclusion, the excellent catalytic activity and coke resistance of the Ni/CeO2–NR should be attributed to the SMSI effect and abundant oxygen vacancies.</description><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Thin film structure and morphology</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFUMlOwzAUtBBIlMKBP_CFY6iXOHGOKGWTuiAE58ixX1pXqR3ZrkT_nlQgOM3TvJnRaBC6peSeEkZnu4ETInIeztCEVpxlZS7E-d-dl5foKsbdqOGE8gnySx-Gre_95ojnMIAz4DRg3-FaJdUfk9X4LfgBQrIQT_zKzmpYM7xSzscUDjodwvjpfBgtofUOz63_sgbwO4zk3rrNybaEtFUOrtFFp_oIN784RZ9Pjx_1S7ZYP7_WD4tMMUpTlpuiAFGCMUQaWVR5AZwywtuK52XHWE4JN1VhBGlbKqRkolOSGi5BE-BE8Sm6-8kdVNSq74Jy2sZmCHavwrFhQlaCl_Rfp3Rsdv4Q3NiqoaQ5rdn8rcm_ARCOZzA</recordid><startdate>20120510</startdate><enddate>20120510</enddate><creator>Du, Xianjun</creator><creator>Zhang, Dengsong</creator><creator>Shi, Liyi</creator><creator>Gao, Ruihua</creator><creator>Zhang, Jianping</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20120510</creationdate><title>Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane</title><author>Du, Xianjun ; Zhang, Dengsong ; Shi, Liyi ; Gao, Ruihua ; Zhang, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-4d66e57edd08d86946e31203b9347f224103d96d50bb158825fa81d38ec0e30a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Xianjun</creatorcontrib><creatorcontrib>Zhang, Dengsong</creatorcontrib><creatorcontrib>Shi, Liyi</creatorcontrib><creatorcontrib>Gao, Ruihua</creatorcontrib><creatorcontrib>Zhang, Jianping</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Xianjun</au><au>Zhang, Dengsong</au><au>Shi, Liyi</au><au>Gao, Ruihua</au><au>Zhang, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-05-10</date><risdate>2012</risdate><volume>116</volume><issue>18</issue><spage>10009</spage><epage>10016</epage><pages>10009-10016</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The comparative catalytic activity and coke resistance are examined in carbon dioxide reforming of methane over Ni/CeO2 nanorods (NR) and nanopolyhedra (NP). The Ni/CeO2–NR catalysts display more excellent catalytic activity and higher coke resistance compared with the Ni/CeO2–NP. The high resolution transmission electron microscope reveals that the predominantly exposed planes are the unusually reactive {110} and {100} planes on the CeO2–NR rather than the stable {111} one on the CeO2–NP. The prepared samples were also characterized by X-ray diffraction, transmission electron microscopy, hydrogen temperature-programmed reduction, X-ray photoelectron spectroscopy, UV and visible Raman spectra, and oxygen temperature-programmed oxidation. The {110} and {100} planes show great superiority for the anchoring of Ni nanoparticles, which results in the existence of strong metal–support interaction effect (SMSI). The SMSI effect can be helpful to prevent sintering of Ni particles, which benefits to reduce the deactivation of catalytic activity. Besides, the oxygen vacancies and the mobility of lattice oxygen also show the morphology dependence. They can participate into the catalytic reaction and be beneficial to the activation of carbon deposition. In conclusion, the excellent catalytic activity and coke resistance of the Ni/CeO2–NR should be attributed to the SMSI effect and abundant oxygen vacancies.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp300543r</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-05, Vol.116 (18), p.10009-10016
issn 1932-7447
1932-7455
language eng
recordid cdi_pascalfrancis_primary_25895371
source ACS Publications
subjects Catalysis
Catalysts: preparations and properties
Chemistry
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
General and physical chemistry
Materials science
Nanoscale materials and structures: fabrication and characterization
Nanotubes
Other topics in nanoscale materials and structures
Physics
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Thin film structure and morphology
title Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology%20Dependence%20of%20Catalytic%20Properties%20of%20Ni/CeO2%20Nanostructures%20for%20Carbon%20Dioxide%20Reforming%20of%20Methane&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Du,%20Xianjun&rft.date=2012-05-10&rft.volume=116&rft.issue=18&rft.spage=10009&rft.epage=10016&rft.pages=10009-10016&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp300543r&rft_dat=%3Cacs_pasca%3Eb377989504%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true