CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS
The mode of CO adsorption is an important factor in directing the selectivity of CO hydrogenation toward methanol, hydrocarbons, or higher alcohols. Here, we report results on three catalysts: Cu/SiO2, Co/SiO2, and CuCo/SiO2. Infrared spectroscopic studies on Cu/SiO2 and CuCo/SiO2 show similar CO ad...
Gespeichert in:
Veröffentlicht in: | J Phys Chem C 2012-04, Vol.116 (14), p.7931-7939 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7939 |
---|---|
container_issue | 14 |
container_start_page | 7931 |
container_title | J Phys Chem C |
container_volume | 116 |
creator | Smith, Miranda L Kumar, Nitin Spivey, James J |
description | The mode of CO adsorption is an important factor in directing the selectivity of CO hydrogenation toward methanol, hydrocarbons, or higher alcohols. Here, we report results on three catalysts: Cu/SiO2, Co/SiO2, and CuCo/SiO2. Infrared spectroscopic studies on Cu/SiO2 and CuCo/SiO2 show similar CO adsorption behavior on copper sites, in terms of adsorption frequency and stability, regardless of the presence or absence of cobalt. The CO species adsorbing on copper is not thermally stable at typical CO hydrogenation reaction temperatures. For CO to adsorb on cobalt sites on either Co/SiO2 or CuCo/SiO2, temperatures above ambient are required. In general, linearly adsorbed CO binds more strongly to the cobalt sites of CuCo/SiO2 than of Co/SiO2. Thus, on CuCo/SiO2, CO is more likely to dissociate at the same sites where it linearly adsorbs, leading to increased probability of CO insertion and ethanol formation. A second type of site on Co/SiO2 is responsible for direct CO dissociation, leading to high activity and hydrocarbon selectivity on this catalyst, as well as faster deactivation. |
doi_str_mv | 10.1021/jp301197s |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_pascalfrancis_primary_25828477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h66456413</sourcerecordid><originalsourceid>FETCH-LOGICAL-a238t-ab62de6d3aa0f760c904a5d3aa0dac20fd9162a09dfe21292d7060818a2d8ff43</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWKsL_0EQ3Dk2yTySWdbRaqFQcOpSwm0eNKVOhklG6L93tKWu7jmHj8PlIHRLySMljE62bUooLXk4QyNapizhWZ6fn3TGL9FVCFtC8oFLR-izWuKpDr5ro_MNfjIb-Ha-w97iqp_UbskecOWPAho9pEeLK4iw24cYcB177YzG6z12Da5d7PHz-3y2qq_RhYVdMDfHO0Yfs5dV9ZYslq_zarpIgKUiJrAumDaFTgGI5QVRJckg_7MaFCNWl7RgQEptDaOsZJqTgggqgGlhbZaO0d2h14foZFAuGrVRvmmMipISQXiRD9D9AWohKNjZDhrlgmw79wXdXrJcMJFx_s-BCnLr-64ZXh9a5O_A8jRw-gPUZmnt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS</title><source>American Chemical Society Journals</source><creator>Smith, Miranda L ; Kumar, Nitin ; Spivey, James J</creator><creatorcontrib>Smith, Miranda L ; Kumar, Nitin ; Spivey, James J ; Energy Frontier Research Centers (EFRC) ; Center for Atomic-Level Catalyst Design (CALCD)</creatorcontrib><description>The mode of CO adsorption is an important factor in directing the selectivity of CO hydrogenation toward methanol, hydrocarbons, or higher alcohols. Here, we report results on three catalysts: Cu/SiO2, Co/SiO2, and CuCo/SiO2. Infrared spectroscopic studies on Cu/SiO2 and CuCo/SiO2 show similar CO adsorption behavior on copper sites, in terms of adsorption frequency and stability, regardless of the presence or absence of cobalt. The CO species adsorbing on copper is not thermally stable at typical CO hydrogenation reaction temperatures. For CO to adsorb on cobalt sites on either Co/SiO2 or CuCo/SiO2, temperatures above ambient are required. In general, linearly adsorbed CO binds more strongly to the cobalt sites of CuCo/SiO2 than of Co/SiO2. Thus, on CuCo/SiO2, CO is more likely to dissociate at the same sites where it linearly adsorbs, leading to increased probability of CO insertion and ethanol formation. A second type of site on Co/SiO2 is responsible for direct CO dissociation, leading to high activity and hydrocarbon selectivity on this catalyst, as well as faster deactivation.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp301197s</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>catalysis (heterogeneous), hydrogen and fuel cells, charge transport, carbon capture, carbon sequestration, materials and chemistry by design, synthesis (novel materials) ; Catalytic methods ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Methods of nanofabrication ; Physics ; Solid surfaces and solid-solid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>J Phys Chem C, 2012-04, Vol.116 (14), p.7931-7939</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp301197s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp301197s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25828477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1080765$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Miranda L</creatorcontrib><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Spivey, James J</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Atomic-Level Catalyst Design (CALCD)</creatorcontrib><title>CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS</title><title>J Phys Chem C</title><addtitle>J. Phys. Chem. C</addtitle><description>The mode of CO adsorption is an important factor in directing the selectivity of CO hydrogenation toward methanol, hydrocarbons, or higher alcohols. Here, we report results on three catalysts: Cu/SiO2, Co/SiO2, and CuCo/SiO2. Infrared spectroscopic studies on Cu/SiO2 and CuCo/SiO2 show similar CO adsorption behavior on copper sites, in terms of adsorption frequency and stability, regardless of the presence or absence of cobalt. The CO species adsorbing on copper is not thermally stable at typical CO hydrogenation reaction temperatures. For CO to adsorb on cobalt sites on either Co/SiO2 or CuCo/SiO2, temperatures above ambient are required. In general, linearly adsorbed CO binds more strongly to the cobalt sites of CuCo/SiO2 than of Co/SiO2. Thus, on CuCo/SiO2, CO is more likely to dissociate at the same sites where it linearly adsorbs, leading to increased probability of CO insertion and ethanol formation. A second type of site on Co/SiO2 is responsible for direct CO dissociation, leading to high activity and hydrocarbon selectivity on this catalyst, as well as faster deactivation.</description><subject>catalysis (heterogeneous), hydrogen and fuel cells, charge transport, carbon capture, carbon sequestration, materials and chemistry by design, synthesis (novel materials)</subject><subject>Catalytic methods</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMoWKsL_0EQ3Dk2yTySWdbRaqFQcOpSwm0eNKVOhklG6L93tKWu7jmHj8PlIHRLySMljE62bUooLXk4QyNapizhWZ6fn3TGL9FVCFtC8oFLR-izWuKpDr5ro_MNfjIb-Ha-w97iqp_UbskecOWPAho9pEeLK4iw24cYcB177YzG6z12Da5d7PHz-3y2qq_RhYVdMDfHO0Yfs5dV9ZYslq_zarpIgKUiJrAumDaFTgGI5QVRJckg_7MaFCNWl7RgQEptDaOsZJqTgggqgGlhbZaO0d2h14foZFAuGrVRvmmMipISQXiRD9D9AWohKNjZDhrlgmw79wXdXrJcMJFx_s-BCnLr-64ZXh9a5O_A8jRw-gPUZmnt</recordid><startdate>20120412</startdate><enddate>20120412</enddate><creator>Smith, Miranda L</creator><creator>Kumar, Nitin</creator><creator>Spivey, James J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>OTOTI</scope></search><sort><creationdate>20120412</creationdate><title>CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS</title><author>Smith, Miranda L ; Kumar, Nitin ; Spivey, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a238t-ab62de6d3aa0f760c904a5d3aa0dac20fd9162a09dfe21292d7060818a2d8ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>catalysis (heterogeneous), hydrogen and fuel cells, charge transport, carbon capture, carbon sequestration, materials and chemistry by design, synthesis (novel materials)</topic><topic>Catalytic methods</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Miranda L</creatorcontrib><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Spivey, James J</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Atomic-Level Catalyst Design (CALCD)</creatorcontrib><collection>Pascal-Francis</collection><collection>OSTI.GOV</collection><jtitle>J Phys Chem C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Miranda L</au><au>Kumar, Nitin</au><au>Spivey, James J</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center for Atomic-Level Catalyst Design (CALCD)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS</atitle><jtitle>J Phys Chem C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-04-12</date><risdate>2012</risdate><volume>116</volume><issue>14</issue><spage>7931</spage><epage>7939</epage><pages>7931-7939</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The mode of CO adsorption is an important factor in directing the selectivity of CO hydrogenation toward methanol, hydrocarbons, or higher alcohols. Here, we report results on three catalysts: Cu/SiO2, Co/SiO2, and CuCo/SiO2. Infrared spectroscopic studies on Cu/SiO2 and CuCo/SiO2 show similar CO adsorption behavior on copper sites, in terms of adsorption frequency and stability, regardless of the presence or absence of cobalt. The CO species adsorbing on copper is not thermally stable at typical CO hydrogenation reaction temperatures. For CO to adsorb on cobalt sites on either Co/SiO2 or CuCo/SiO2, temperatures above ambient are required. In general, linearly adsorbed CO binds more strongly to the cobalt sites of CuCo/SiO2 than of Co/SiO2. Thus, on CuCo/SiO2, CO is more likely to dissociate at the same sites where it linearly adsorbs, leading to increased probability of CO insertion and ethanol formation. A second type of site on Co/SiO2 is responsible for direct CO dissociation, leading to high activity and hydrocarbon selectivity on this catalyst, as well as faster deactivation.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp301197s</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | J Phys Chem C, 2012-04, Vol.116 (14), p.7931-7939 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_pascalfrancis_primary_25828477 |
source | American Chemical Society Journals |
subjects | catalysis (heterogeneous), hydrogen and fuel cells, charge transport, carbon capture, carbon sequestration, materials and chemistry by design, synthesis (novel materials) Catalytic methods Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Methods of nanofabrication Physics Solid surfaces and solid-solid interfaces Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO%20Adsorption%20Behavior%20of%20Cu/SiO2,%20Co/SiO2,%20and%20CuCo/SiO2%20Catalysts%20Studied%20by%20in%20Situ%20DRIFTS&rft.jtitle=J%20Phys%20Chem%20C&rft.au=Smith,%20Miranda%20L&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-04-12&rft.volume=116&rft.issue=14&rft.spage=7931&rft.epage=7939&rft.pages=7931-7939&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp301197s&rft_dat=%3Cacs_osti_%3Eh66456413%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |