CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS

The mode of CO adsorption is an important factor in directing the selectivity of CO hydrogenation toward methanol, hydrocarbons, or higher alcohols. Here, we report results on three catalysts: Cu/SiO2, Co/SiO2, and CuCo/SiO2. Infrared spectroscopic studies on Cu/SiO2 and CuCo/SiO2 show similar CO ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J Phys Chem C 2012-04, Vol.116 (14), p.7931-7939
Hauptverfasser: Smith, Miranda L, Kumar, Nitin, Spivey, James J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7939
container_issue 14
container_start_page 7931
container_title J Phys Chem C
container_volume 116
creator Smith, Miranda L
Kumar, Nitin
Spivey, James J
description The mode of CO adsorption is an important factor in directing the selectivity of CO hydrogenation toward methanol, hydrocarbons, or higher alcohols. Here, we report results on three catalysts: Cu/SiO2, Co/SiO2, and CuCo/SiO2. Infrared spectroscopic studies on Cu/SiO2 and CuCo/SiO2 show similar CO adsorption behavior on copper sites, in terms of adsorption frequency and stability, regardless of the presence or absence of cobalt. The CO species adsorbing on copper is not thermally stable at typical CO hydrogenation reaction temperatures. For CO to adsorb on cobalt sites on either Co/SiO2 or CuCo/SiO2, temperatures above ambient are required. In general, linearly adsorbed CO binds more strongly to the cobalt sites of CuCo/SiO2 than of Co/SiO2. Thus, on CuCo/SiO2, CO is more likely to dissociate at the same sites where it linearly adsorbs, leading to increased probability of CO insertion and ethanol formation. A second type of site on Co/SiO2 is responsible for direct CO dissociation, leading to high activity and hydrocarbon selectivity on this catalyst, as well as faster deactivation.
doi_str_mv 10.1021/jp301197s
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_pascalfrancis_primary_25828477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h66456413</sourcerecordid><originalsourceid>FETCH-LOGICAL-a238t-ab62de6d3aa0f760c904a5d3aa0dac20fd9162a09dfe21292d7060818a2d8ff43</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWKsL_0EQ3Dk2yTySWdbRaqFQcOpSwm0eNKVOhklG6L93tKWu7jmHj8PlIHRLySMljE62bUooLXk4QyNapizhWZ6fn3TGL9FVCFtC8oFLR-izWuKpDr5ro_MNfjIb-Ha-w97iqp_UbskecOWPAho9pEeLK4iw24cYcB177YzG6z12Da5d7PHz-3y2qq_RhYVdMDfHO0Yfs5dV9ZYslq_zarpIgKUiJrAumDaFTgGI5QVRJckg_7MaFCNWl7RgQEptDaOsZJqTgggqgGlhbZaO0d2h14foZFAuGrVRvmmMipISQXiRD9D9AWohKNjZDhrlgmw79wXdXrJcMJFx_s-BCnLr-64ZXh9a5O_A8jRw-gPUZmnt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS</title><source>American Chemical Society Journals</source><creator>Smith, Miranda L ; Kumar, Nitin ; Spivey, James J</creator><creatorcontrib>Smith, Miranda L ; Kumar, Nitin ; Spivey, James J ; Energy Frontier Research Centers (EFRC) ; Center for Atomic-Level Catalyst Design (CALCD)</creatorcontrib><description>The mode of CO adsorption is an important factor in directing the selectivity of CO hydrogenation toward methanol, hydrocarbons, or higher alcohols. Here, we report results on three catalysts: Cu/SiO2, Co/SiO2, and CuCo/SiO2. Infrared spectroscopic studies on Cu/SiO2 and CuCo/SiO2 show similar CO adsorption behavior on copper sites, in terms of adsorption frequency and stability, regardless of the presence or absence of cobalt. The CO species adsorbing on copper is not thermally stable at typical CO hydrogenation reaction temperatures. For CO to adsorb on cobalt sites on either Co/SiO2 or CuCo/SiO2, temperatures above ambient are required. In general, linearly adsorbed CO binds more strongly to the cobalt sites of CuCo/SiO2 than of Co/SiO2. Thus, on CuCo/SiO2, CO is more likely to dissociate at the same sites where it linearly adsorbs, leading to increased probability of CO insertion and ethanol formation. A second type of site on Co/SiO2 is responsible for direct CO dissociation, leading to high activity and hydrocarbon selectivity on this catalyst, as well as faster deactivation.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp301197s</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>catalysis (heterogeneous), hydrogen and fuel cells, charge transport, carbon capture, carbon sequestration, materials and chemistry by design, synthesis (novel materials) ; Catalytic methods ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Methods of nanofabrication ; Physics ; Solid surfaces and solid-solid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>J Phys Chem C, 2012-04, Vol.116 (14), p.7931-7939</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp301197s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp301197s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25828477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1080765$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Miranda L</creatorcontrib><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Spivey, James J</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Atomic-Level Catalyst Design (CALCD)</creatorcontrib><title>CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS</title><title>J Phys Chem C</title><addtitle>J. Phys. Chem. C</addtitle><description>The mode of CO adsorption is an important factor in directing the selectivity of CO hydrogenation toward methanol, hydrocarbons, or higher alcohols. Here, we report results on three catalysts: Cu/SiO2, Co/SiO2, and CuCo/SiO2. Infrared spectroscopic studies on Cu/SiO2 and CuCo/SiO2 show similar CO adsorption behavior on copper sites, in terms of adsorption frequency and stability, regardless of the presence or absence of cobalt. The CO species adsorbing on copper is not thermally stable at typical CO hydrogenation reaction temperatures. For CO to adsorb on cobalt sites on either Co/SiO2 or CuCo/SiO2, temperatures above ambient are required. In general, linearly adsorbed CO binds more strongly to the cobalt sites of CuCo/SiO2 than of Co/SiO2. Thus, on CuCo/SiO2, CO is more likely to dissociate at the same sites where it linearly adsorbs, leading to increased probability of CO insertion and ethanol formation. A second type of site on Co/SiO2 is responsible for direct CO dissociation, leading to high activity and hydrocarbon selectivity on this catalyst, as well as faster deactivation.</description><subject>catalysis (heterogeneous), hydrogen and fuel cells, charge transport, carbon capture, carbon sequestration, materials and chemistry by design, synthesis (novel materials)</subject><subject>Catalytic methods</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMoWKsL_0EQ3Dk2yTySWdbRaqFQcOpSwm0eNKVOhklG6L93tKWu7jmHj8PlIHRLySMljE62bUooLXk4QyNapizhWZ6fn3TGL9FVCFtC8oFLR-izWuKpDr5ro_MNfjIb-Ha-w97iqp_UbskecOWPAho9pEeLK4iw24cYcB177YzG6z12Da5d7PHz-3y2qq_RhYVdMDfHO0Yfs5dV9ZYslq_zarpIgKUiJrAumDaFTgGI5QVRJckg_7MaFCNWl7RgQEptDaOsZJqTgggqgGlhbZaO0d2h14foZFAuGrVRvmmMipISQXiRD9D9AWohKNjZDhrlgmw79wXdXrJcMJFx_s-BCnLr-64ZXh9a5O_A8jRw-gPUZmnt</recordid><startdate>20120412</startdate><enddate>20120412</enddate><creator>Smith, Miranda L</creator><creator>Kumar, Nitin</creator><creator>Spivey, James J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>OTOTI</scope></search><sort><creationdate>20120412</creationdate><title>CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS</title><author>Smith, Miranda L ; Kumar, Nitin ; Spivey, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a238t-ab62de6d3aa0f760c904a5d3aa0dac20fd9162a09dfe21292d7060818a2d8ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>catalysis (heterogeneous), hydrogen and fuel cells, charge transport, carbon capture, carbon sequestration, materials and chemistry by design, synthesis (novel materials)</topic><topic>Catalytic methods</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Miranda L</creatorcontrib><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Spivey, James J</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Atomic-Level Catalyst Design (CALCD)</creatorcontrib><collection>Pascal-Francis</collection><collection>OSTI.GOV</collection><jtitle>J Phys Chem C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Miranda L</au><au>Kumar, Nitin</au><au>Spivey, James J</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center for Atomic-Level Catalyst Design (CALCD)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS</atitle><jtitle>J Phys Chem C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-04-12</date><risdate>2012</risdate><volume>116</volume><issue>14</issue><spage>7931</spage><epage>7939</epage><pages>7931-7939</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The mode of CO adsorption is an important factor in directing the selectivity of CO hydrogenation toward methanol, hydrocarbons, or higher alcohols. Here, we report results on three catalysts: Cu/SiO2, Co/SiO2, and CuCo/SiO2. Infrared spectroscopic studies on Cu/SiO2 and CuCo/SiO2 show similar CO adsorption behavior on copper sites, in terms of adsorption frequency and stability, regardless of the presence or absence of cobalt. The CO species adsorbing on copper is not thermally stable at typical CO hydrogenation reaction temperatures. For CO to adsorb on cobalt sites on either Co/SiO2 or CuCo/SiO2, temperatures above ambient are required. In general, linearly adsorbed CO binds more strongly to the cobalt sites of CuCo/SiO2 than of Co/SiO2. Thus, on CuCo/SiO2, CO is more likely to dissociate at the same sites where it linearly adsorbs, leading to increased probability of CO insertion and ethanol formation. A second type of site on Co/SiO2 is responsible for direct CO dissociation, leading to high activity and hydrocarbon selectivity on this catalyst, as well as faster deactivation.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp301197s</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof J Phys Chem C, 2012-04, Vol.116 (14), p.7931-7939
issn 1932-7447
1932-7455
language eng
recordid cdi_pascalfrancis_primary_25828477
source American Chemical Society Journals
subjects catalysis (heterogeneous), hydrogen and fuel cells, charge transport, carbon capture, carbon sequestration, materials and chemistry by design, synthesis (novel materials)
Catalytic methods
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Methods of nanofabrication
Physics
Solid surfaces and solid-solid interfaces
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO%20Adsorption%20Behavior%20of%20Cu/SiO2,%20Co/SiO2,%20and%20CuCo/SiO2%20Catalysts%20Studied%20by%20in%20Situ%20DRIFTS&rft.jtitle=J%20Phys%20Chem%20C&rft.au=Smith,%20Miranda%20L&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-04-12&rft.volume=116&rft.issue=14&rft.spage=7931&rft.epage=7939&rft.pages=7931-7939&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp301197s&rft_dat=%3Cacs_osti_%3Eh66456413%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true