Network Structure in GeS2–Sb2S3 Chalcogenide Glasses: Raman Spectroscopy and Phase Transformation Study

Structural order beyond the next-nearest-neighbor structural units is of great interest in network glasses, especially in chalcogenide glasses, but little specific description can be reached. Here, the structure of pseudobinary (100 – x)GeS2–xSb2S3 chalcogenide glasses is elucidated using differenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-03, Vol.116 (9), p.5862-5867
Hauptverfasser: Lin, Changgui, Li, Zhuobin, Ying, Lei, Xu, Yinsheng, Zhang, Peiqing, Dai, Shixun, Xu, Tiefeng, Nie, Qiuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5867
container_issue 9
container_start_page 5862
container_title Journal of physical chemistry. C
container_volume 116
creator Lin, Changgui
Li, Zhuobin
Ying, Lei
Xu, Yinsheng
Zhang, Peiqing
Dai, Shixun
Xu, Tiefeng
Nie, Qiuhua
description Structural order beyond the next-nearest-neighbor structural units is of great interest in network glasses, especially in chalcogenide glasses, but little specific description can be reached. Here, the structure of pseudobinary (100 – x)GeS2–xSb2S3 chalcogenide glasses is elucidated using differential scanning calorimetry, Raman scattering, and laser-induced phase transformation experiments over its full range (0 ≤ x ≤ 100) of compositions. We observe two compositional thresholds of x = 40 and 50 in the calorimetric experiments, which are confirmed by Raman scattering and laser-induced phase transformation studies, respectively. Three structural features can be derived from these results: the structural motifs in this glass network are the [SbS3] pyramid and [GeS4] tetrahedra, respectively; at x ≥ 40, the connection between [GeS4] tetrahedra vanishes; and at x ≥ 50, the aggregation of four [SbS3] units happens, preparing for the laser-induced crystallization of Sb2S3 crystallites. Combined with valuable indication from the topological thresholds, a specific structural model covering the arrangement of structural units in a large atomic scale is clarified, which can perfectly explain all the experimental results. This work provides a new way to get insight into the intermediate-range order of glass networks and understand their related physical properties.
doi_str_mv 10.1021/jp208614j
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25596697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c295647614</sourcerecordid><originalsourceid>FETCH-LOGICAL-a145t-256a95c274f3cb70c6b646c6936bea92125bc95b0e24a74de2455175a8915e8f3</originalsourceid><addsrcrecordid>eNpFkM1Kw0AYRQdRsFYXvsFsXEbnfzrupGgVioqp6_BlMrGJaRJmJpTufAff0CcxotTVvYvD5XAROqfkkhJGr-qekZmioj5AE2o4S7SQ8nDfhT5GJyHUhEhOKJ-g6tHFbeffcRr9YOPgHa5avHAp-_r4THOWcjxfQ2O7N9dWhcOLBkJw4Rq_wAZanPbORt8F2_U7DG2Bn9cQHF55aEPZ-Q3EqhupOBS7U3RUQhPc2V9O0evd7Wp-nyyfFg_zm2UCVMiYMKnASMu0KLnNNbEqV0JZZbjKHRhGmcytkTlxTIAWxRhSUi1hZqh0s5JP0cXvbg_BQlOOKrYKWe-rDfhdxqQ0Shn9z4ENWd0Nvh2tMkqynx-z_Y_8G_sxZfY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Network Structure in GeS2–Sb2S3 Chalcogenide Glasses: Raman Spectroscopy and Phase Transformation Study</title><source>ACS Publications</source><creator>Lin, Changgui ; Li, Zhuobin ; Ying, Lei ; Xu, Yinsheng ; Zhang, Peiqing ; Dai, Shixun ; Xu, Tiefeng ; Nie, Qiuhua</creator><creatorcontrib>Lin, Changgui ; Li, Zhuobin ; Ying, Lei ; Xu, Yinsheng ; Zhang, Peiqing ; Dai, Shixun ; Xu, Tiefeng ; Nie, Qiuhua</creatorcontrib><description>Structural order beyond the next-nearest-neighbor structural units is of great interest in network glasses, especially in chalcogenide glasses, but little specific description can be reached. Here, the structure of pseudobinary (100 – x)GeS2–xSb2S3 chalcogenide glasses is elucidated using differential scanning calorimetry, Raman scattering, and laser-induced phase transformation experiments over its full range (0 ≤ x ≤ 100) of compositions. We observe two compositional thresholds of x = 40 and 50 in the calorimetric experiments, which are confirmed by Raman scattering and laser-induced phase transformation studies, respectively. Three structural features can be derived from these results: the structural motifs in this glass network are the [SbS3] pyramid and [GeS4] tetrahedra, respectively; at x ≥ 40, the connection between [GeS4] tetrahedra vanishes; and at x ≥ 50, the aggregation of four [SbS3] units happens, preparing for the laser-induced crystallization of Sb2S3 crystallites. Combined with valuable indication from the topological thresholds, a specific structural model covering the arrangement of structural units in a large atomic scale is clarified, which can perfectly explain all the experimental results. This work provides a new way to get insight into the intermediate-range order of glass networks and understand their related physical properties.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp208614j</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Disordered solids ; Exact sciences and technology ; Glasses ; Physics ; Structure of solids and liquids; crystallography</subject><ispartof>Journal of physical chemistry. C, 2012-03, Vol.116 (9), p.5862-5867</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp208614j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp208614j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25596697$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Changgui</creatorcontrib><creatorcontrib>Li, Zhuobin</creatorcontrib><creatorcontrib>Ying, Lei</creatorcontrib><creatorcontrib>Xu, Yinsheng</creatorcontrib><creatorcontrib>Zhang, Peiqing</creatorcontrib><creatorcontrib>Dai, Shixun</creatorcontrib><creatorcontrib>Xu, Tiefeng</creatorcontrib><creatorcontrib>Nie, Qiuhua</creatorcontrib><title>Network Structure in GeS2–Sb2S3 Chalcogenide Glasses: Raman Spectroscopy and Phase Transformation Study</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Structural order beyond the next-nearest-neighbor structural units is of great interest in network glasses, especially in chalcogenide glasses, but little specific description can be reached. Here, the structure of pseudobinary (100 – x)GeS2–xSb2S3 chalcogenide glasses is elucidated using differential scanning calorimetry, Raman scattering, and laser-induced phase transformation experiments over its full range (0 ≤ x ≤ 100) of compositions. We observe two compositional thresholds of x = 40 and 50 in the calorimetric experiments, which are confirmed by Raman scattering and laser-induced phase transformation studies, respectively. Three structural features can be derived from these results: the structural motifs in this glass network are the [SbS3] pyramid and [GeS4] tetrahedra, respectively; at x ≥ 40, the connection between [GeS4] tetrahedra vanishes; and at x ≥ 50, the aggregation of four [SbS3] units happens, preparing for the laser-induced crystallization of Sb2S3 crystallites. Combined with valuable indication from the topological thresholds, a specific structural model covering the arrangement of structural units in a large atomic scale is clarified, which can perfectly explain all the experimental results. This work provides a new way to get insight into the intermediate-range order of glass networks and understand their related physical properties.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Disordered solids</subject><subject>Exact sciences and technology</subject><subject>Glasses</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Kw0AYRQdRsFYXvsFsXEbnfzrupGgVioqp6_BlMrGJaRJmJpTufAff0CcxotTVvYvD5XAROqfkkhJGr-qekZmioj5AE2o4S7SQ8nDfhT5GJyHUhEhOKJ-g6tHFbeffcRr9YOPgHa5avHAp-_r4THOWcjxfQ2O7N9dWhcOLBkJw4Rq_wAZanPbORt8F2_U7DG2Bn9cQHF55aEPZ-Q3EqhupOBS7U3RUQhPc2V9O0evd7Wp-nyyfFg_zm2UCVMiYMKnASMu0KLnNNbEqV0JZZbjKHRhGmcytkTlxTIAWxRhSUi1hZqh0s5JP0cXvbg_BQlOOKrYKWe-rDfhdxqQ0Shn9z4ENWd0Nvh2tMkqynx-z_Y_8G_sxZfY</recordid><startdate>20120308</startdate><enddate>20120308</enddate><creator>Lin, Changgui</creator><creator>Li, Zhuobin</creator><creator>Ying, Lei</creator><creator>Xu, Yinsheng</creator><creator>Zhang, Peiqing</creator><creator>Dai, Shixun</creator><creator>Xu, Tiefeng</creator><creator>Nie, Qiuhua</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20120308</creationdate><title>Network Structure in GeS2–Sb2S3 Chalcogenide Glasses: Raman Spectroscopy and Phase Transformation Study</title><author>Lin, Changgui ; Li, Zhuobin ; Ying, Lei ; Xu, Yinsheng ; Zhang, Peiqing ; Dai, Shixun ; Xu, Tiefeng ; Nie, Qiuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a145t-256a95c274f3cb70c6b646c6936bea92125bc95b0e24a74de2455175a8915e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Disordered solids</topic><topic>Exact sciences and technology</topic><topic>Glasses</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Changgui</creatorcontrib><creatorcontrib>Li, Zhuobin</creatorcontrib><creatorcontrib>Ying, Lei</creatorcontrib><creatorcontrib>Xu, Yinsheng</creatorcontrib><creatorcontrib>Zhang, Peiqing</creatorcontrib><creatorcontrib>Dai, Shixun</creatorcontrib><creatorcontrib>Xu, Tiefeng</creatorcontrib><creatorcontrib>Nie, Qiuhua</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Changgui</au><au>Li, Zhuobin</au><au>Ying, Lei</au><au>Xu, Yinsheng</au><au>Zhang, Peiqing</au><au>Dai, Shixun</au><au>Xu, Tiefeng</au><au>Nie, Qiuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Structure in GeS2–Sb2S3 Chalcogenide Glasses: Raman Spectroscopy and Phase Transformation Study</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-03-08</date><risdate>2012</risdate><volume>116</volume><issue>9</issue><spage>5862</spage><epage>5867</epage><pages>5862-5867</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Structural order beyond the next-nearest-neighbor structural units is of great interest in network glasses, especially in chalcogenide glasses, but little specific description can be reached. Here, the structure of pseudobinary (100 – x)GeS2–xSb2S3 chalcogenide glasses is elucidated using differential scanning calorimetry, Raman scattering, and laser-induced phase transformation experiments over its full range (0 ≤ x ≤ 100) of compositions. We observe two compositional thresholds of x = 40 and 50 in the calorimetric experiments, which are confirmed by Raman scattering and laser-induced phase transformation studies, respectively. Three structural features can be derived from these results: the structural motifs in this glass network are the [SbS3] pyramid and [GeS4] tetrahedra, respectively; at x ≥ 40, the connection between [GeS4] tetrahedra vanishes; and at x ≥ 50, the aggregation of four [SbS3] units happens, preparing for the laser-induced crystallization of Sb2S3 crystallites. Combined with valuable indication from the topological thresholds, a specific structural model covering the arrangement of structural units in a large atomic scale is clarified, which can perfectly explain all the experimental results. This work provides a new way to get insight into the intermediate-range order of glass networks and understand their related physical properties.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp208614j</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-03, Vol.116 (9), p.5862-5867
issn 1932-7447
1932-7455
language eng
recordid cdi_pascalfrancis_primary_25596697
source ACS Publications
subjects Condensed matter: structure, mechanical and thermal properties
Disordered solids
Exact sciences and technology
Glasses
Physics
Structure of solids and liquids
crystallography
title Network Structure in GeS2–Sb2S3 Chalcogenide Glasses: Raman Spectroscopy and Phase Transformation Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Structure%20in%20GeS2%E2%80%93Sb2S3%20Chalcogenide%20Glasses:%20Raman%20Spectroscopy%20and%20Phase%20Transformation%20Study&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Lin,%20Changgui&rft.date=2012-03-08&rft.volume=116&rft.issue=9&rft.spage=5862&rft.epage=5867&rft.pages=5862-5867&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp208614j&rft_dat=%3Cacs_pasca%3Ec295647614%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true