Experiment-Based Kinetic Monte Carlo Simulations: CO Oxidation over RuO2(110)

Kinetic Monte Carlo (kMC) simulations of the CO oxidation over RuO2(110) have been performed for a variety of different reaction conditions ranging from 10–7 to 10 mbar and temperatures from 300 to 600 K. The kMC simulations are based on reaction rates of elementary steps including diffusion, adsorp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-01, Vol.116 (1), p.581-591
Hauptverfasser: Farkas, A, Hess, F, Over, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 591
container_issue 1
container_start_page 581
container_title Journal of physical chemistry. C
container_volume 116
creator Farkas, A
Hess, F
Over, H
description Kinetic Monte Carlo (kMC) simulations of the CO oxidation over RuO2(110) have been performed for a variety of different reaction conditions ranging from 10–7 to 10 mbar and temperatures from 300 to 600 K. The kMC simulations are based on reaction rates of elementary steps including diffusion, adsorption/desorption, and recombination of surface CO and O. The activation barriers for these elementary processes are mostly taken from temperature programmed reaction and desorption experiments of well-defined coadsorbate layers on RuO2(110) under ultrahigh vacuum conditions. We show that the experimental kinetic reaction data under steady state reaction conditions both in the 10–7 mbar range and in a batch reactor up to 10 mbar are reconciled within this experiment-based kMC approach. Experimental in situ reflection absorption infrared (RAIR) spectra in the frequency range of the CO stretch vibration depend sensitively on both the adsorption site and the local environment of the CO molecules, encoding thus the surface distribution of CO and O during the reaction experiment. Simulated RAIR spectra of kMC-determined snapshots of the surface configuration of reactants under reaction conditions reproduce well the experimental ones. RAIR spectroscopy provides thus a clear-cut criterion for assessing the quality of kMC simulations in the CO oxidation on RuO2(110).
doi_str_mv 10.1021/jp204703p
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25489688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c892189273</sourcerecordid><originalsourceid>FETCH-LOGICAL-a145t-76ab932b685e594e01a5ac36d8f96db681b36c65a83c4633a3cc126847e7cc643</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoOI4u_AfZCLqo5p3UnZbxgTMUfKzLbZpCSqctSWcY_731wbi69x4uh-8chM4puaaE0ZtmYERowocDNKMpZ4kWUh7ud6GP0UmMDSGSE8pnaLXYDS74tevG5B6iq_CL79zoLV713ehwBqHt8Ztfb1oYfd_FW5zlON_56ufE_dYF_LrJ2SWl5OoUHdXQRnf2N-fo42Hxnj0ly_zxObtbJkCFHBOtoJx4SmWkk6lwhIIEy1Vl6lRVk0xLrqySYLgVinPg1lKmjNBOW6sEn6OLX98BooW2DtBZH4thCgLhs2BSmFQZ8_8HNhZNvwndRFVQUnx3Vey74l_8iVmb</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experiment-Based Kinetic Monte Carlo Simulations: CO Oxidation over RuO2(110)</title><source>ACS Publications</source><creator>Farkas, A ; Hess, F ; Over, H</creator><creatorcontrib>Farkas, A ; Hess, F ; Over, H</creatorcontrib><description>Kinetic Monte Carlo (kMC) simulations of the CO oxidation over RuO2(110) have been performed for a variety of different reaction conditions ranging from 10–7 to 10 mbar and temperatures from 300 to 600 K. The kMC simulations are based on reaction rates of elementary steps including diffusion, adsorption/desorption, and recombination of surface CO and O. The activation barriers for these elementary processes are mostly taken from temperature programmed reaction and desorption experiments of well-defined coadsorbate layers on RuO2(110) under ultrahigh vacuum conditions. We show that the experimental kinetic reaction data under steady state reaction conditions both in the 10–7 mbar range and in a batch reactor up to 10 mbar are reconciled within this experiment-based kMC approach. Experimental in situ reflection absorption infrared (RAIR) spectra in the frequency range of the CO stretch vibration depend sensitively on both the adsorption site and the local environment of the CO molecules, encoding thus the surface distribution of CO and O during the reaction experiment. Simulated RAIR spectra of kMC-determined snapshots of the surface configuration of reactants under reaction conditions reproduce well the experimental ones. RAIR spectroscopy provides thus a clear-cut criterion for assessing the quality of kMC simulations in the CO oxidation on RuO2(110).</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp204703p</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>C: Surfaces, Interfaces, Catalysis ; Catalysis ; Catalytic reactions ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of physical chemistry. C, 2012-01, Vol.116 (1), p.581-591</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp204703p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp204703p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25489688$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Farkas, A</creatorcontrib><creatorcontrib>Hess, F</creatorcontrib><creatorcontrib>Over, H</creatorcontrib><title>Experiment-Based Kinetic Monte Carlo Simulations: CO Oxidation over RuO2(110)</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Kinetic Monte Carlo (kMC) simulations of the CO oxidation over RuO2(110) have been performed for a variety of different reaction conditions ranging from 10–7 to 10 mbar and temperatures from 300 to 600 K. The kMC simulations are based on reaction rates of elementary steps including diffusion, adsorption/desorption, and recombination of surface CO and O. The activation barriers for these elementary processes are mostly taken from temperature programmed reaction and desorption experiments of well-defined coadsorbate layers on RuO2(110) under ultrahigh vacuum conditions. We show that the experimental kinetic reaction data under steady state reaction conditions both in the 10–7 mbar range and in a batch reactor up to 10 mbar are reconciled within this experiment-based kMC approach. Experimental in situ reflection absorption infrared (RAIR) spectra in the frequency range of the CO stretch vibration depend sensitively on both the adsorption site and the local environment of the CO molecules, encoding thus the surface distribution of CO and O during the reaction experiment. Simulated RAIR spectra of kMC-determined snapshots of the surface configuration of reactants under reaction conditions reproduce well the experimental ones. RAIR spectroscopy provides thus a clear-cut criterion for assessing the quality of kMC simulations in the CO oxidation on RuO2(110).</description><subject>C: Surfaces, Interfaces, Catalysis</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLxDAUhYMoOI4u_AfZCLqo5p3UnZbxgTMUfKzLbZpCSqctSWcY_731wbi69x4uh-8chM4puaaE0ZtmYERowocDNKMpZ4kWUh7ud6GP0UmMDSGSE8pnaLXYDS74tevG5B6iq_CL79zoLV713ehwBqHt8Ztfb1oYfd_FW5zlON_56ufE_dYF_LrJ2SWl5OoUHdXQRnf2N-fo42Hxnj0ly_zxObtbJkCFHBOtoJx4SmWkk6lwhIIEy1Vl6lRVk0xLrqySYLgVinPg1lKmjNBOW6sEn6OLX98BooW2DtBZH4thCgLhs2BSmFQZ8_8HNhZNvwndRFVQUnx3Vey74l_8iVmb</recordid><startdate>20120112</startdate><enddate>20120112</enddate><creator>Farkas, A</creator><creator>Hess, F</creator><creator>Over, H</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20120112</creationdate><title>Experiment-Based Kinetic Monte Carlo Simulations: CO Oxidation over RuO2(110)</title><author>Farkas, A ; Hess, F ; Over, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a145t-76ab932b685e594e01a5ac36d8f96db681b36c65a83c4633a3cc126847e7cc643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>C: Surfaces, Interfaces, Catalysis</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farkas, A</creatorcontrib><creatorcontrib>Hess, F</creatorcontrib><creatorcontrib>Over, H</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farkas, A</au><au>Hess, F</au><au>Over, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experiment-Based Kinetic Monte Carlo Simulations: CO Oxidation over RuO2(110)</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-01-12</date><risdate>2012</risdate><volume>116</volume><issue>1</issue><spage>581</spage><epage>591</epage><pages>581-591</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Kinetic Monte Carlo (kMC) simulations of the CO oxidation over RuO2(110) have been performed for a variety of different reaction conditions ranging from 10–7 to 10 mbar and temperatures from 300 to 600 K. The kMC simulations are based on reaction rates of elementary steps including diffusion, adsorption/desorption, and recombination of surface CO and O. The activation barriers for these elementary processes are mostly taken from temperature programmed reaction and desorption experiments of well-defined coadsorbate layers on RuO2(110) under ultrahigh vacuum conditions. We show that the experimental kinetic reaction data under steady state reaction conditions both in the 10–7 mbar range and in a batch reactor up to 10 mbar are reconciled within this experiment-based kMC approach. Experimental in situ reflection absorption infrared (RAIR) spectra in the frequency range of the CO stretch vibration depend sensitively on both the adsorption site and the local environment of the CO molecules, encoding thus the surface distribution of CO and O during the reaction experiment. Simulated RAIR spectra of kMC-determined snapshots of the surface configuration of reactants under reaction conditions reproduce well the experimental ones. RAIR spectroscopy provides thus a clear-cut criterion for assessing the quality of kMC simulations in the CO oxidation on RuO2(110).</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp204703p</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-01, Vol.116 (1), p.581-591
issn 1932-7447
1932-7455
language eng
recordid cdi_pascalfrancis_primary_25489688
source ACS Publications
subjects C: Surfaces, Interfaces, Catalysis
Catalysis
Catalytic reactions
Chemistry
Exact sciences and technology
General and physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Experiment-Based Kinetic Monte Carlo Simulations: CO Oxidation over RuO2(110)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experiment-Based%20Kinetic%20Monte%20Carlo%20Simulations:%20CO%20Oxidation%20over%20RuO2(110)&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Farkas,%20A&rft.date=2012-01-12&rft.volume=116&rft.issue=1&rft.spage=581&rft.epage=591&rft.pages=581-591&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp204703p&rft_dat=%3Cacs_pasca%3Ec892189273%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true