Low-Latency Real-Time Meeting Recognition and Understanding Using Distant Microphones and Omni-Directional Camera
This paper presents our real-time meeting analyzer for monitoring conversations in an ongoing group meeting. The goal of the system is to recognize automatically "who is speaking what" in an online manner for meeting assistance. Our system continuously captures the utterances and face pose...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2012-02, Vol.20 (2), p.499-513 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 513 |
---|---|
container_issue | 2 |
container_start_page | 499 |
container_title | IEEE transactions on audio, speech, and language processing |
container_volume | 20 |
creator | Hori, T. Araki, S. Yoshioka, T. Fujimoto, M. Watanabe, S. Oba, T. Ogawa, A. Otsuka, K. Mikami, D. Kinoshita, K. Nakatani, T. Nakamura, A. Yamato, J. |
description | This paper presents our real-time meeting analyzer for monitoring conversations in an ongoing group meeting. The goal of the system is to recognize automatically "who is speaking what" in an online manner for meeting assistance. Our system continuously captures the utterances and face poses of each speaker using a microphone array and an omni-directional camera positioned at the center of the meeting table. Through a series of advanced audio processing operations, an overlapping speech signal is enhanced and the components are separated into individual speaker's channels. Then the utterances are sequentially transcribed by our speech recognizer with low latency. In parallel with speech recognition, the activity of each participant (e.g., speaking, laughing, watching someone) and the circumstances of the meeting (e.g., topic, activeness, casualness) are detected and displayed on a browser together with the transcripts. In this paper, we describe our techniques and our attempt to achieve the low-latency monitoring of meetings, and we show our experimental results for real-time meeting transcription. |
doi_str_mv | 10.1109/TASL.2011.2164527 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_25473683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5983476</ieee_id><sourcerecordid>2570326501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-d3936498a2a287495e56c31bb48c2b26c856a94478110a4cf4a48359bc90ce473</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhoMoWKs_QLwEQfCSup_J7lFavyAiaHsO0-1UV5JNu5si_fdubOnBy-4w88w7M7xJcknJiFKi76b3H-WIEUpHjOZCsuIoGVApVVZoJo4PMc1Pk7MQvgkRPBd0kKzL9icroUNntuk7Qp1NbYPpK2Jn3WfMmPbT2c62LgW3SGdugT50Meyrs9C_E9snuvTVGt-uvlqH4Y99a5zNJtaj6duhTsfQoIfz5GQJdcCL_T9MZo8P0_FzVr49vYzvy8wIRrtswXXcUCtgwFQhtESZG07nc6EMm7PcKJmDFqJQ8X4QZilAKC713GhiUBR8mNzudFe-XW8wdFVjg8G6BoftJlSUUKI0F7mK6PU_9Lvd-LhyqDQtFNeMkwjRHRSvDMHjslp524DfRqWq96DqPah6D6q9B7HnZi8MwUC99OCMDYdGJuOecX7krnacRcRDWWrFRZHzX3B4jtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917839230</pqid></control><display><type>article</type><title>Low-Latency Real-Time Meeting Recognition and Understanding Using Distant Microphones and Omni-Directional Camera</title><source>IEEE Electronic Library (IEL)</source><creator>Hori, T. ; Araki, S. ; Yoshioka, T. ; Fujimoto, M. ; Watanabe, S. ; Oba, T. ; Ogawa, A. ; Otsuka, K. ; Mikami, D. ; Kinoshita, K. ; Nakatani, T. ; Nakamura, A. ; Yamato, J.</creator><creatorcontrib>Hori, T. ; Araki, S. ; Yoshioka, T. ; Fujimoto, M. ; Watanabe, S. ; Oba, T. ; Ogawa, A. ; Otsuka, K. ; Mikami, D. ; Kinoshita, K. ; Nakatani, T. ; Nakamura, A. ; Yamato, J.</creatorcontrib><description>This paper presents our real-time meeting analyzer for monitoring conversations in an ongoing group meeting. The goal of the system is to recognize automatically "who is speaking what" in an online manner for meeting assistance. Our system continuously captures the utterances and face poses of each speaker using a microphone array and an omni-directional camera positioned at the center of the meeting table. Through a series of advanced audio processing operations, an overlapping speech signal is enhanced and the components are separated into individual speaker's channels. Then the utterances are sequentially transcribed by our speech recognizer with low latency. In parallel with speech recognition, the activity of each participant (e.g., speaking, laughing, watching someone) and the circumstances of the meeting (e.g., topic, activeness, casualness) are detected and displayed on a browser together with the transcripts. In this paper, we describe our techniques and our attempt to achieve the low-latency monitoring of meetings, and we show our experimental results for real-time meeting transcription.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-7924</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASL.2011.2164527</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Browsers ; Cameras ; Distant microphones ; Exact sciences and technology ; Information, signal and communications theory ; meeting analysis ; Meetings ; Microphones ; Miscellaneous ; Monitoring ; Pattern recognition ; Real time ; Real-time systems ; Recognition ; Signal processing ; speaker diarization ; Speech ; speech enhancement ; Speech processing ; Speech recognition ; Studies ; Telecommunications and information theory ; topic tracking</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2012-02, Vol.20 (2), p.499-513</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-d3936498a2a287495e56c31bb48c2b26c856a94478110a4cf4a48359bc90ce473</citedby><cites>FETCH-LOGICAL-c421t-d3936498a2a287495e56c31bb48c2b26c856a94478110a4cf4a48359bc90ce473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5983476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5983476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25473683$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hori, T.</creatorcontrib><creatorcontrib>Araki, S.</creatorcontrib><creatorcontrib>Yoshioka, T.</creatorcontrib><creatorcontrib>Fujimoto, M.</creatorcontrib><creatorcontrib>Watanabe, S.</creatorcontrib><creatorcontrib>Oba, T.</creatorcontrib><creatorcontrib>Ogawa, A.</creatorcontrib><creatorcontrib>Otsuka, K.</creatorcontrib><creatorcontrib>Mikami, D.</creatorcontrib><creatorcontrib>Kinoshita, K.</creatorcontrib><creatorcontrib>Nakatani, T.</creatorcontrib><creatorcontrib>Nakamura, A.</creatorcontrib><creatorcontrib>Yamato, J.</creatorcontrib><title>Low-Latency Real-Time Meeting Recognition and Understanding Using Distant Microphones and Omni-Directional Camera</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>This paper presents our real-time meeting analyzer for monitoring conversations in an ongoing group meeting. The goal of the system is to recognize automatically "who is speaking what" in an online manner for meeting assistance. Our system continuously captures the utterances and face poses of each speaker using a microphone array and an omni-directional camera positioned at the center of the meeting table. Through a series of advanced audio processing operations, an overlapping speech signal is enhanced and the components are separated into individual speaker's channels. Then the utterances are sequentially transcribed by our speech recognizer with low latency. In parallel with speech recognition, the activity of each participant (e.g., speaking, laughing, watching someone) and the circumstances of the meeting (e.g., topic, activeness, casualness) are detected and displayed on a browser together with the transcripts. In this paper, we describe our techniques and our attempt to achieve the low-latency monitoring of meetings, and we show our experimental results for real-time meeting transcription.</description><subject>Applied sciences</subject><subject>Browsers</subject><subject>Cameras</subject><subject>Distant microphones</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>meeting analysis</subject><subject>Meetings</subject><subject>Microphones</subject><subject>Miscellaneous</subject><subject>Monitoring</subject><subject>Pattern recognition</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Recognition</subject><subject>Signal processing</subject><subject>speaker diarization</subject><subject>Speech</subject><subject>speech enhancement</subject><subject>Speech processing</subject><subject>Speech recognition</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>topic tracking</subject><issn>1558-7916</issn><issn>2329-9290</issn><issn>1558-7924</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1Lw0AQhoMoWKs_QLwEQfCSup_J7lFavyAiaHsO0-1UV5JNu5si_fdubOnBy-4w88w7M7xJcknJiFKi76b3H-WIEUpHjOZCsuIoGVApVVZoJo4PMc1Pk7MQvgkRPBd0kKzL9icroUNntuk7Qp1NbYPpK2Jn3WfMmPbT2c62LgW3SGdugT50Meyrs9C_E9snuvTVGt-uvlqH4Y99a5zNJtaj6duhTsfQoIfz5GQJdcCL_T9MZo8P0_FzVr49vYzvy8wIRrtswXXcUCtgwFQhtESZG07nc6EMm7PcKJmDFqJQ8X4QZilAKC713GhiUBR8mNzudFe-XW8wdFVjg8G6BoftJlSUUKI0F7mK6PU_9Lvd-LhyqDQtFNeMkwjRHRSvDMHjslp524DfRqWq96DqPah6D6q9B7HnZi8MwUC99OCMDYdGJuOecX7krnacRcRDWWrFRZHzX3B4jtQ</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Hori, T.</creator><creator>Araki, S.</creator><creator>Yoshioka, T.</creator><creator>Fujimoto, M.</creator><creator>Watanabe, S.</creator><creator>Oba, T.</creator><creator>Ogawa, A.</creator><creator>Otsuka, K.</creator><creator>Mikami, D.</creator><creator>Kinoshita, K.</creator><creator>Nakatani, T.</creator><creator>Nakamura, A.</creator><creator>Yamato, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>Low-Latency Real-Time Meeting Recognition and Understanding Using Distant Microphones and Omni-Directional Camera</title><author>Hori, T. ; Araki, S. ; Yoshioka, T. ; Fujimoto, M. ; Watanabe, S. ; Oba, T. ; Ogawa, A. ; Otsuka, K. ; Mikami, D. ; Kinoshita, K. ; Nakatani, T. ; Nakamura, A. ; Yamato, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-d3936498a2a287495e56c31bb48c2b26c856a94478110a4cf4a48359bc90ce473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Browsers</topic><topic>Cameras</topic><topic>Distant microphones</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>meeting analysis</topic><topic>Meetings</topic><topic>Microphones</topic><topic>Miscellaneous</topic><topic>Monitoring</topic><topic>Pattern recognition</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Recognition</topic><topic>Signal processing</topic><topic>speaker diarization</topic><topic>Speech</topic><topic>speech enhancement</topic><topic>Speech processing</topic><topic>Speech recognition</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>topic tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hori, T.</creatorcontrib><creatorcontrib>Araki, S.</creatorcontrib><creatorcontrib>Yoshioka, T.</creatorcontrib><creatorcontrib>Fujimoto, M.</creatorcontrib><creatorcontrib>Watanabe, S.</creatorcontrib><creatorcontrib>Oba, T.</creatorcontrib><creatorcontrib>Ogawa, A.</creatorcontrib><creatorcontrib>Otsuka, K.</creatorcontrib><creatorcontrib>Mikami, D.</creatorcontrib><creatorcontrib>Kinoshita, K.</creatorcontrib><creatorcontrib>Nakatani, T.</creatorcontrib><creatorcontrib>Nakamura, A.</creatorcontrib><creatorcontrib>Yamato, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hori, T.</au><au>Araki, S.</au><au>Yoshioka, T.</au><au>Fujimoto, M.</au><au>Watanabe, S.</au><au>Oba, T.</au><au>Ogawa, A.</au><au>Otsuka, K.</au><au>Mikami, D.</au><au>Kinoshita, K.</au><au>Nakatani, T.</au><au>Nakamura, A.</au><au>Yamato, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Latency Real-Time Meeting Recognition and Understanding Using Distant Microphones and Omni-Directional Camera</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>20</volume><issue>2</issue><spage>499</spage><epage>513</epage><pages>499-513</pages><issn>1558-7916</issn><issn>2329-9290</issn><eissn>1558-7924</eissn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>This paper presents our real-time meeting analyzer for monitoring conversations in an ongoing group meeting. The goal of the system is to recognize automatically "who is speaking what" in an online manner for meeting assistance. Our system continuously captures the utterances and face poses of each speaker using a microphone array and an omni-directional camera positioned at the center of the meeting table. Through a series of advanced audio processing operations, an overlapping speech signal is enhanced and the components are separated into individual speaker's channels. Then the utterances are sequentially transcribed by our speech recognizer with low latency. In parallel with speech recognition, the activity of each participant (e.g., speaking, laughing, watching someone) and the circumstances of the meeting (e.g., topic, activeness, casualness) are detected and displayed on a browser together with the transcripts. In this paper, we describe our techniques and our attempt to achieve the low-latency monitoring of meetings, and we show our experimental results for real-time meeting transcription.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2011.2164527</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1558-7916 |
ispartof | IEEE transactions on audio, speech, and language processing, 2012-02, Vol.20 (2), p.499-513 |
issn | 1558-7916 2329-9290 1558-7924 2329-9304 |
language | eng |
recordid | cdi_pascalfrancis_primary_25473683 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Browsers Cameras Distant microphones Exact sciences and technology Information, signal and communications theory meeting analysis Meetings Microphones Miscellaneous Monitoring Pattern recognition Real time Real-time systems Recognition Signal processing speaker diarization Speech speech enhancement Speech processing Speech recognition Studies Telecommunications and information theory topic tracking |
title | Low-Latency Real-Time Meeting Recognition and Understanding Using Distant Microphones and Omni-Directional Camera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Latency%20Real-Time%20Meeting%20Recognition%20and%20Understanding%20Using%20Distant%20Microphones%20and%20Omni-Directional%20Camera&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Hori,%20T.&rft.date=2012-02-01&rft.volume=20&rft.issue=2&rft.spage=499&rft.epage=513&rft.pages=499-513&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2011.2164527&rft_dat=%3Cproquest_RIE%3E2570326501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917839230&rft_id=info:pmid/&rft_ieee_id=5983476&rfr_iscdi=true |