Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor
There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected ro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2012-01, Vol.21 (1), p.157-169 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | 1 |
container_start_page | 157 |
container_title | IEEE transactions on image processing |
container_volume | 21 |
creator | Shu Liao Chung, A. C. S. |
description | There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior. |
doi_str_mv | 10.1109/TIP.2011.2159615 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_25473112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5876318</ieee_id><sourcerecordid>912424039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-97e37f22b9f1a3ce574ebc0bab86125f925359ec34ba8ee37ca9c58ed5bd83c03</originalsourceid><addsrcrecordid>eNpFkE1PwkAQhjdGI4jeTUxML8ZTcWc_2u5R8YsE0SCcm-0yxTW0xd1y8N-7COJpZvI-7xweQs6B9gGoupkO3_qMAvQZSJWAPCBdUAJiSgU7DDuVaZyCUB1y4v0npSAkJMekwyBRm6tLxuOmdnZh59Gd07aOXibRsNILjCa4sL51urVNHc28rRfRrLZl46roffWBzhq9_IVCfI_eOLtqG3dKjkq99Hi2mz0ye3yYDp7j0evTcHA7ig1XtI1VijwtGStUCZoblKnAwtBCF1kCTJaKSS4VGi4KnWFgjVZGZjiXxTzjhvIeud7-Xbnma42-zSvrDS6XusZm7XMFTDBBuQok3ZLGNd47LPOVs5V23znQfCMxDxLzjcR8JzFULnfP10WF833hz1oArnaA9kFD6XRtrP_npEg5AAvcxZaziLiPZZYmHDL-A89egnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912424039</pqid></control><display><type>article</type><title>Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor</title><source>IEEE Xplore</source><creator>Shu Liao ; Chung, A. C. S.</creator><creatorcontrib>Shu Liao ; Chung, A. C. S.</creatorcontrib><description>There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2011.2159615</identifier><identifier>PMID: 21690014</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Brain - anatomy & histology ; Equations ; Exact sciences and technology ; Feature extraction ; Histograms ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image registration ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information theory ; Information, signal and communications theory ; Magnetic Resonance Imaging - methods ; Mathematical model ; Monotonic gray-level transformation invariant ; nonrigid image registration ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Robustness ; rotation invariant ; Sensitivity and Specificity ; Signal processing ; Subtraction Technique ; Telecommunications and information theory ; uniform spherical region descriptor (USRD)</subject><ispartof>IEEE transactions on image processing, 2012-01, Vol.21 (1), p.157-169</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-97e37f22b9f1a3ce574ebc0bab86125f925359ec34ba8ee37ca9c58ed5bd83c03</citedby><cites>FETCH-LOGICAL-c390t-97e37f22b9f1a3ce574ebc0bab86125f925359ec34ba8ee37ca9c58ed5bd83c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5876318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5876318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25473112$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21690014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu Liao</creatorcontrib><creatorcontrib>Chung, A. C. S.</creatorcontrib><title>Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Brain - anatomy & histology</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image registration</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical model</subject><subject>Monotonic gray-level transformation invariant</subject><subject>nonrigid image registration</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>rotation invariant</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><subject>Subtraction Technique</subject><subject>Telecommunications and information theory</subject><subject>uniform spherical region descriptor (USRD)</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkE1PwkAQhjdGI4jeTUxML8ZTcWc_2u5R8YsE0SCcm-0yxTW0xd1y8N-7COJpZvI-7xweQs6B9gGoupkO3_qMAvQZSJWAPCBdUAJiSgU7DDuVaZyCUB1y4v0npSAkJMekwyBRm6tLxuOmdnZh59Gd07aOXibRsNILjCa4sL51urVNHc28rRfRrLZl46roffWBzhq9_IVCfI_eOLtqG3dKjkq99Hi2mz0ye3yYDp7j0evTcHA7ig1XtI1VijwtGStUCZoblKnAwtBCF1kCTJaKSS4VGi4KnWFgjVZGZjiXxTzjhvIeud7-Xbnma42-zSvrDS6XusZm7XMFTDBBuQok3ZLGNd47LPOVs5V23znQfCMxDxLzjcR8JzFULnfP10WF833hz1oArnaA9kFD6XRtrP_npEg5AAvcxZaziLiPZZYmHDL-A89egnY</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Shu Liao</creator><creator>Chung, A. C. S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201201</creationdate><title>Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor</title><author>Shu Liao ; Chung, A. C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-97e37f22b9f1a3ce574ebc0bab86125f925359ec34ba8ee37ca9c58ed5bd83c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Brain - anatomy & histology</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image registration</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical model</topic><topic>Monotonic gray-level transformation invariant</topic><topic>nonrigid image registration</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>rotation invariant</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><topic>Subtraction Technique</topic><topic>Telecommunications and information theory</topic><topic>uniform spherical region descriptor (USRD)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu Liao</creatorcontrib><creatorcontrib>Chung, A. C. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu Liao</au><au>Chung, A. C. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-01</date><risdate>2012</risdate><volume>21</volume><issue>1</issue><spage>157</spage><epage>169</epage><pages>157-169</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21690014</pmid><doi>10.1109/TIP.2011.2159615</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2012-01, Vol.21 (1), p.157-169 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_25473112 |
source | IEEE Xplore |
subjects | Algorithm design and analysis Algorithms Applied sciences Brain - anatomy & histology Equations Exact sciences and technology Feature extraction Histograms Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image registration Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Information theory Information, signal and communications theory Magnetic Resonance Imaging - methods Mathematical model Monotonic gray-level transformation invariant nonrigid image registration Pattern Recognition, Automated - methods Reproducibility of Results Robustness rotation invariant Sensitivity and Specificity Signal processing Subtraction Technique Telecommunications and information theory uniform spherical region descriptor (USRD) |
title | Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonrigid%20Brain%20MR%20Image%20Registration%20Using%20Uniform%20Spherical%20Region%20Descriptor&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Shu%20Liao&rft.date=2012-01&rft.volume=21&rft.issue=1&rft.spage=157&rft.epage=169&rft.pages=157-169&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2011.2159615&rft_dat=%3Cproquest_RIE%3E912424039%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912424039&rft_id=info:pmid/21690014&rft_ieee_id=5876318&rfr_iscdi=true |