Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor

There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2012-01, Vol.21 (1), p.157-169
Hauptverfasser: Shu Liao, Chung, A. C. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 1
container_start_page 157
container_title IEEE transactions on image processing
container_volume 21
creator Shu Liao
Chung, A. C. S.
description There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior.
doi_str_mv 10.1109/TIP.2011.2159615
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_25473112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5876318</ieee_id><sourcerecordid>912424039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-97e37f22b9f1a3ce574ebc0bab86125f925359ec34ba8ee37ca9c58ed5bd83c03</originalsourceid><addsrcrecordid>eNpFkE1PwkAQhjdGI4jeTUxML8ZTcWc_2u5R8YsE0SCcm-0yxTW0xd1y8N-7COJpZvI-7xweQs6B9gGoupkO3_qMAvQZSJWAPCBdUAJiSgU7DDuVaZyCUB1y4v0npSAkJMekwyBRm6tLxuOmdnZh59Gd07aOXibRsNILjCa4sL51urVNHc28rRfRrLZl46roffWBzhq9_IVCfI_eOLtqG3dKjkq99Hi2mz0ye3yYDp7j0evTcHA7ig1XtI1VijwtGStUCZoblKnAwtBCF1kCTJaKSS4VGi4KnWFgjVZGZjiXxTzjhvIeud7-Xbnma42-zSvrDS6XusZm7XMFTDBBuQok3ZLGNd47LPOVs5V23znQfCMxDxLzjcR8JzFULnfP10WF833hz1oArnaA9kFD6XRtrP_npEg5AAvcxZaziLiPZZYmHDL-A89egnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912424039</pqid></control><display><type>article</type><title>Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor</title><source>IEEE Xplore</source><creator>Shu Liao ; Chung, A. C. S.</creator><creatorcontrib>Shu Liao ; Chung, A. C. S.</creatorcontrib><description>There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2011.2159615</identifier><identifier>PMID: 21690014</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Brain - anatomy &amp; histology ; Equations ; Exact sciences and technology ; Feature extraction ; Histograms ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image registration ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information theory ; Information, signal and communications theory ; Magnetic Resonance Imaging - methods ; Mathematical model ; Monotonic gray-level transformation invariant ; nonrigid image registration ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Robustness ; rotation invariant ; Sensitivity and Specificity ; Signal processing ; Subtraction Technique ; Telecommunications and information theory ; uniform spherical region descriptor (USRD)</subject><ispartof>IEEE transactions on image processing, 2012-01, Vol.21 (1), p.157-169</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-97e37f22b9f1a3ce574ebc0bab86125f925359ec34ba8ee37ca9c58ed5bd83c03</citedby><cites>FETCH-LOGICAL-c390t-97e37f22b9f1a3ce574ebc0bab86125f925359ec34ba8ee37ca9c58ed5bd83c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5876318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5876318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25473112$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21690014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu Liao</creatorcontrib><creatorcontrib>Chung, A. C. S.</creatorcontrib><title>Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Brain - anatomy &amp; histology</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image registration</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical model</subject><subject>Monotonic gray-level transformation invariant</subject><subject>nonrigid image registration</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>rotation invariant</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><subject>Subtraction Technique</subject><subject>Telecommunications and information theory</subject><subject>uniform spherical region descriptor (USRD)</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkE1PwkAQhjdGI4jeTUxML8ZTcWc_2u5R8YsE0SCcm-0yxTW0xd1y8N-7COJpZvI-7xweQs6B9gGoupkO3_qMAvQZSJWAPCBdUAJiSgU7DDuVaZyCUB1y4v0npSAkJMekwyBRm6tLxuOmdnZh59Gd07aOXibRsNILjCa4sL51urVNHc28rRfRrLZl46roffWBzhq9_IVCfI_eOLtqG3dKjkq99Hi2mz0ye3yYDp7j0evTcHA7ig1XtI1VijwtGStUCZoblKnAwtBCF1kCTJaKSS4VGi4KnWFgjVZGZjiXxTzjhvIeud7-Xbnma42-zSvrDS6XusZm7XMFTDBBuQok3ZLGNd47LPOVs5V23znQfCMxDxLzjcR8JzFULnfP10WF833hz1oArnaA9kFD6XRtrP_npEg5AAvcxZaziLiPZZYmHDL-A89egnY</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Shu Liao</creator><creator>Chung, A. C. S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201201</creationdate><title>Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor</title><author>Shu Liao ; Chung, A. C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-97e37f22b9f1a3ce574ebc0bab86125f925359ec34ba8ee37ca9c58ed5bd83c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Brain - anatomy &amp; histology</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image registration</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical model</topic><topic>Monotonic gray-level transformation invariant</topic><topic>nonrigid image registration</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>rotation invariant</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><topic>Subtraction Technique</topic><topic>Telecommunications and information theory</topic><topic>uniform spherical region descriptor (USRD)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu Liao</creatorcontrib><creatorcontrib>Chung, A. C. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu Liao</au><au>Chung, A. C. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-01</date><risdate>2012</risdate><volume>21</volume><issue>1</issue><spage>157</spage><epage>169</epage><pages>157-169</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21690014</pmid><doi>10.1109/TIP.2011.2159615</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2012-01, Vol.21 (1), p.157-169
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_25473112
source IEEE Xplore
subjects Algorithm design and analysis
Algorithms
Applied sciences
Brain - anatomy & histology
Equations
Exact sciences and technology
Feature extraction
Histograms
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image registration
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Information theory
Information, signal and communications theory
Magnetic Resonance Imaging - methods
Mathematical model
Monotonic gray-level transformation invariant
nonrigid image registration
Pattern Recognition, Automated - methods
Reproducibility of Results
Robustness
rotation invariant
Sensitivity and Specificity
Signal processing
Subtraction Technique
Telecommunications and information theory
uniform spherical region descriptor (USRD)
title Nonrigid Brain MR Image Registration Using Uniform Spherical Region Descriptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonrigid%20Brain%20MR%20Image%20Registration%20Using%20Uniform%20Spherical%20Region%20Descriptor&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Shu%20Liao&rft.date=2012-01&rft.volume=21&rft.issue=1&rft.spage=157&rft.epage=169&rft.pages=157-169&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2011.2159615&rft_dat=%3Cproquest_RIE%3E912424039%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912424039&rft_id=info:pmid/21690014&rft_ieee_id=5876318&rfr_iscdi=true