Analytical Study of Tangent Orbit and Conditions for Its Solution Existence

This paper presents an analytical study of the two-body tangent orbit technique by providing solution-existence conditions. The flight-direction angle is used to describe and solve this problem. Closed-form solutions are obtained for three classic problems: specified arrival flight-direction angle,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2012-01, Vol.35 (1), p.186-194
Hauptverfasser: Zhang, Gang, Zhou, Di, Mortari, Daniele, Henderson, Troy A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 1
container_start_page 186
container_title Journal of guidance, control, and dynamics
container_volume 35
creator Zhang, Gang
Zhou, Di
Mortari, Daniele
Henderson, Troy A
description This paper presents an analytical study of the two-body tangent orbit technique by providing solution-existence conditions. The flight-direction angle is used to describe and solve this problem. Closed-form solutions are obtained for three classic problems: specified arrival flight-direction angle, specified departure flight-direction angle, and cotangent transfers. Not all of the problems admit solutions; thus, closed-form conditions for solution existence are provided by imposing a positive semilatus rectum constraint and a negative transfer-orbit energy (elliptic orbit transfer) constraint. The final solution-existence condition is then provided in terms of the true anomaly range for initial or final orbit. The singularity problem of 180 deg orbit transfer is also analyzed. Several examples are provided to verify the proposed analytical methods. [PUBLISHER ABSTRACT]
doi_str_mv 10.2514/1.53396
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25472057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957375791</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-b7586256287fd884ba9a21ce80d014c8b74e14796b0554418e1a4bba36ea34b13</originalsourceid><addsrcrecordid>eNpt0FtLwzAYBuAgCs4D_oWAinrRmWPTXsrwhMIuNq_L1zaVjC6ZSQru35s5EVGvEpKHN19ehE4oGTNJxTUdS87LfAeNaNpkvCjELhoRxWkmSUn20UEIC0Ioz6kaoacbC_06mgZ6PItDu8auw3Owr9pGPPW1iRhsiyfOtiYaZwPunMePMeCZ64fNCb59NyFq2-gjtNdBH_Tx13qIXu5u55OH7Hl6_zi5ec6AqzJmtZJFzmTOCtW1aboaSmC00QVpCRVNUSuhqVBlXhMphaCFpiDqGniugYua8kN0uc1defc26BCrpQmN7nuw2g2hooSWOSsJ4Yme_qILN_j05aS4yJVijG3UxVY13oXgdVetvFmCX6eoalNqRavPUpM8_8qDkCrrPNjGhG_OpFCMSJXc2daBAfjx5p-4q3_Z9rpatV3VDX0f9XvkH7fZjWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346772223</pqid></control><display><type>article</type><title>Analytical Study of Tangent Orbit and Conditions for Its Solution Existence</title><source>Alma/SFX Local Collection</source><creator>Zhang, Gang ; Zhou, Di ; Mortari, Daniele ; Henderson, Troy A</creator><creatorcontrib>Zhang, Gang ; Zhou, Di ; Mortari, Daniele ; Henderson, Troy A</creatorcontrib><description>This paper presents an analytical study of the two-body tangent orbit technique by providing solution-existence conditions. The flight-direction angle is used to describe and solve this problem. Closed-form solutions are obtained for three classic problems: specified arrival flight-direction angle, specified departure flight-direction angle, and cotangent transfers. Not all of the problems admit solutions; thus, closed-form conditions for solution existence are provided by imposing a positive semilatus rectum constraint and a negative transfer-orbit energy (elliptic orbit transfer) constraint. The final solution-existence condition is then provided in terms of the true anomaly range for initial or final orbit. The singularity problem of 180 deg orbit transfer is also analyzed. Several examples are provided to verify the proposed analytical methods. [PUBLISHER ABSTRACT]</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.53396</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerospace engineering ; Arrivals ; Dynamics ; Exact sciences and technology ; Exact solutions ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Orbits ; Physics ; Rectum ; Rocket launches ; Singularities ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Tangents ; Velocity</subject><ispartof>Journal of guidance, control, and dynamics, 2012-01, Vol.35 (1), p.186-194</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jan-Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-b7586256287fd884ba9a21ce80d014c8b74e14796b0554418e1a4bba36ea34b13</citedby><cites>FETCH-LOGICAL-a379t-b7586256287fd884ba9a21ce80d014c8b74e14796b0554418e1a4bba36ea34b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25472057$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Zhou, Di</creatorcontrib><creatorcontrib>Mortari, Daniele</creatorcontrib><creatorcontrib>Henderson, Troy A</creatorcontrib><title>Analytical Study of Tangent Orbit and Conditions for Its Solution Existence</title><title>Journal of guidance, control, and dynamics</title><description>This paper presents an analytical study of the two-body tangent orbit technique by providing solution-existence conditions. The flight-direction angle is used to describe and solve this problem. Closed-form solutions are obtained for three classic problems: specified arrival flight-direction angle, specified departure flight-direction angle, and cotangent transfers. Not all of the problems admit solutions; thus, closed-form conditions for solution existence are provided by imposing a positive semilatus rectum constraint and a negative transfer-orbit energy (elliptic orbit transfer) constraint. The final solution-existence condition is then provided in terms of the true anomaly range for initial or final orbit. The singularity problem of 180 deg orbit transfer is also analyzed. Several examples are provided to verify the proposed analytical methods. [PUBLISHER ABSTRACT]</description><subject>Aerospace engineering</subject><subject>Arrivals</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Physics</subject><subject>Rectum</subject><subject>Rocket launches</subject><subject>Singularities</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Tangents</subject><subject>Velocity</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0FtLwzAYBuAgCs4D_oWAinrRmWPTXsrwhMIuNq_L1zaVjC6ZSQru35s5EVGvEpKHN19ehE4oGTNJxTUdS87LfAeNaNpkvCjELhoRxWkmSUn20UEIC0Ioz6kaoacbC_06mgZ6PItDu8auw3Owr9pGPPW1iRhsiyfOtiYaZwPunMePMeCZ64fNCb59NyFq2-gjtNdBH_Tx13qIXu5u55OH7Hl6_zi5ec6AqzJmtZJFzmTOCtW1aboaSmC00QVpCRVNUSuhqVBlXhMphaCFpiDqGniugYua8kN0uc1defc26BCrpQmN7nuw2g2hooSWOSsJ4Yme_qILN_j05aS4yJVijG3UxVY13oXgdVetvFmCX6eoalNqRavPUpM8_8qDkCrrPNjGhG_OpFCMSJXc2daBAfjx5p-4q3_Z9rpatV3VDX0f9XvkH7fZjWU</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Zhang, Gang</creator><creator>Zhou, Di</creator><creator>Mortari, Daniele</creator><creator>Henderson, Troy A</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201201</creationdate><title>Analytical Study of Tangent Orbit and Conditions for Its Solution Existence</title><author>Zhang, Gang ; Zhou, Di ; Mortari, Daniele ; Henderson, Troy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-b7586256287fd884ba9a21ce80d014c8b74e14796b0554418e1a4bba36ea34b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerospace engineering</topic><topic>Arrivals</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Physics</topic><topic>Rectum</topic><topic>Rocket launches</topic><topic>Singularities</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Tangents</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Zhou, Di</creatorcontrib><creatorcontrib>Mortari, Daniele</creatorcontrib><creatorcontrib>Henderson, Troy A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Gang</au><au>Zhou, Di</au><au>Mortari, Daniele</au><au>Henderson, Troy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Study of Tangent Orbit and Conditions for Its Solution Existence</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2012-01</date><risdate>2012</risdate><volume>35</volume><issue>1</issue><spage>186</spage><epage>194</epage><pages>186-194</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>This paper presents an analytical study of the two-body tangent orbit technique by providing solution-existence conditions. The flight-direction angle is used to describe and solve this problem. Closed-form solutions are obtained for three classic problems: specified arrival flight-direction angle, specified departure flight-direction angle, and cotangent transfers. Not all of the problems admit solutions; thus, closed-form conditions for solution existence are provided by imposing a positive semilatus rectum constraint and a negative transfer-orbit energy (elliptic orbit transfer) constraint. The final solution-existence condition is then provided in terms of the true anomaly range for initial or final orbit. The singularity problem of 180 deg orbit transfer is also analyzed. Several examples are provided to verify the proposed analytical methods. [PUBLISHER ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.53396</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2012-01, Vol.35 (1), p.186-194
issn 0731-5090
1533-3884
language eng
recordid cdi_pascalfrancis_primary_25472057
source Alma/SFX Local Collection
subjects Aerospace engineering
Arrivals
Dynamics
Exact sciences and technology
Exact solutions
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Orbits
Physics
Rectum
Rocket launches
Singularities
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
Tangents
Velocity
title Analytical Study of Tangent Orbit and Conditions for Its Solution Existence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Study%20of%20Tangent%20Orbit%20and%20Conditions%20for%20Its%20Solution%20Existence&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Zhang,%20Gang&rft.date=2012-01&rft.volume=35&rft.issue=1&rft.spage=186&rft.epage=194&rft.pages=186-194&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.53396&rft_dat=%3Cproquest_pasca%3E2957375791%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346772223&rft_id=info:pmid/&rfr_iscdi=true