Analytical Study of Tangent Orbit and Conditions for Its Solution Existence
This paper presents an analytical study of the two-body tangent orbit technique by providing solution-existence conditions. The flight-direction angle is used to describe and solve this problem. Closed-form solutions are obtained for three classic problems: specified arrival flight-direction angle,...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2012-01, Vol.35 (1), p.186-194 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 1 |
container_start_page | 186 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 35 |
creator | Zhang, Gang Zhou, Di Mortari, Daniele Henderson, Troy A |
description | This paper presents an analytical study of the two-body tangent orbit technique by providing solution-existence conditions. The flight-direction angle is used to describe and solve this problem. Closed-form solutions are obtained for three classic problems: specified arrival flight-direction angle, specified departure flight-direction angle, and cotangent transfers. Not all of the problems admit solutions; thus, closed-form conditions for solution existence are provided by imposing a positive semilatus rectum constraint and a negative transfer-orbit energy (elliptic orbit transfer) constraint. The final solution-existence condition is then provided in terms of the true anomaly range for initial or final orbit. The singularity problem of 180 deg orbit transfer is also analyzed. Several examples are provided to verify the proposed analytical methods. [PUBLISHER ABSTRACT] |
doi_str_mv | 10.2514/1.53396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25472057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957375791</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-b7586256287fd884ba9a21ce80d014c8b74e14796b0554418e1a4bba36ea34b13</originalsourceid><addsrcrecordid>eNpt0FtLwzAYBuAgCs4D_oWAinrRmWPTXsrwhMIuNq_L1zaVjC6ZSQru35s5EVGvEpKHN19ehE4oGTNJxTUdS87LfAeNaNpkvCjELhoRxWkmSUn20UEIC0Ioz6kaoacbC_06mgZ6PItDu8auw3Owr9pGPPW1iRhsiyfOtiYaZwPunMePMeCZ64fNCb59NyFq2-gjtNdBH_Tx13qIXu5u55OH7Hl6_zi5ec6AqzJmtZJFzmTOCtW1aboaSmC00QVpCRVNUSuhqVBlXhMphaCFpiDqGniugYua8kN0uc1defc26BCrpQmN7nuw2g2hooSWOSsJ4Yme_qILN_j05aS4yJVijG3UxVY13oXgdVetvFmCX6eoalNqRavPUpM8_8qDkCrrPNjGhG_OpFCMSJXc2daBAfjx5p-4q3_Z9rpatV3VDX0f9XvkH7fZjWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346772223</pqid></control><display><type>article</type><title>Analytical Study of Tangent Orbit and Conditions for Its Solution Existence</title><source>Alma/SFX Local Collection</source><creator>Zhang, Gang ; Zhou, Di ; Mortari, Daniele ; Henderson, Troy A</creator><creatorcontrib>Zhang, Gang ; Zhou, Di ; Mortari, Daniele ; Henderson, Troy A</creatorcontrib><description>This paper presents an analytical study of the two-body tangent orbit technique by providing solution-existence conditions. The flight-direction angle is used to describe and solve this problem. Closed-form solutions are obtained for three classic problems: specified arrival flight-direction angle, specified departure flight-direction angle, and cotangent transfers. Not all of the problems admit solutions; thus, closed-form conditions for solution existence are provided by imposing a positive semilatus rectum constraint and a negative transfer-orbit energy (elliptic orbit transfer) constraint. The final solution-existence condition is then provided in terms of the true anomaly range for initial or final orbit. The singularity problem of 180 deg orbit transfer is also analyzed. Several examples are provided to verify the proposed analytical methods. [PUBLISHER ABSTRACT]</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.53396</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerospace engineering ; Arrivals ; Dynamics ; Exact sciences and technology ; Exact solutions ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Orbits ; Physics ; Rectum ; Rocket launches ; Singularities ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Tangents ; Velocity</subject><ispartof>Journal of guidance, control, and dynamics, 2012-01, Vol.35 (1), p.186-194</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jan-Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-b7586256287fd884ba9a21ce80d014c8b74e14796b0554418e1a4bba36ea34b13</citedby><cites>FETCH-LOGICAL-a379t-b7586256287fd884ba9a21ce80d014c8b74e14796b0554418e1a4bba36ea34b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25472057$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Zhou, Di</creatorcontrib><creatorcontrib>Mortari, Daniele</creatorcontrib><creatorcontrib>Henderson, Troy A</creatorcontrib><title>Analytical Study of Tangent Orbit and Conditions for Its Solution Existence</title><title>Journal of guidance, control, and dynamics</title><description>This paper presents an analytical study of the two-body tangent orbit technique by providing solution-existence conditions. The flight-direction angle is used to describe and solve this problem. Closed-form solutions are obtained for three classic problems: specified arrival flight-direction angle, specified departure flight-direction angle, and cotangent transfers. Not all of the problems admit solutions; thus, closed-form conditions for solution existence are provided by imposing a positive semilatus rectum constraint and a negative transfer-orbit energy (elliptic orbit transfer) constraint. The final solution-existence condition is then provided in terms of the true anomaly range for initial or final orbit. The singularity problem of 180 deg orbit transfer is also analyzed. Several examples are provided to verify the proposed analytical methods. [PUBLISHER ABSTRACT]</description><subject>Aerospace engineering</subject><subject>Arrivals</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Physics</subject><subject>Rectum</subject><subject>Rocket launches</subject><subject>Singularities</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Tangents</subject><subject>Velocity</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0FtLwzAYBuAgCs4D_oWAinrRmWPTXsrwhMIuNq_L1zaVjC6ZSQru35s5EVGvEpKHN19ehE4oGTNJxTUdS87LfAeNaNpkvCjELhoRxWkmSUn20UEIC0Ioz6kaoacbC_06mgZ6PItDu8auw3Owr9pGPPW1iRhsiyfOtiYaZwPunMePMeCZ64fNCb59NyFq2-gjtNdBH_Tx13qIXu5u55OH7Hl6_zi5ec6AqzJmtZJFzmTOCtW1aboaSmC00QVpCRVNUSuhqVBlXhMphaCFpiDqGniugYua8kN0uc1defc26BCrpQmN7nuw2g2hooSWOSsJ4Yme_qILN_j05aS4yJVijG3UxVY13oXgdVetvFmCX6eoalNqRavPUpM8_8qDkCrrPNjGhG_OpFCMSJXc2daBAfjx5p-4q3_Z9rpatV3VDX0f9XvkH7fZjWU</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Zhang, Gang</creator><creator>Zhou, Di</creator><creator>Mortari, Daniele</creator><creator>Henderson, Troy A</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201201</creationdate><title>Analytical Study of Tangent Orbit and Conditions for Its Solution Existence</title><author>Zhang, Gang ; Zhou, Di ; Mortari, Daniele ; Henderson, Troy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-b7586256287fd884ba9a21ce80d014c8b74e14796b0554418e1a4bba36ea34b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerospace engineering</topic><topic>Arrivals</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Physics</topic><topic>Rectum</topic><topic>Rocket launches</topic><topic>Singularities</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Tangents</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Zhou, Di</creatorcontrib><creatorcontrib>Mortari, Daniele</creatorcontrib><creatorcontrib>Henderson, Troy A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Gang</au><au>Zhou, Di</au><au>Mortari, Daniele</au><au>Henderson, Troy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Study of Tangent Orbit and Conditions for Its Solution Existence</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2012-01</date><risdate>2012</risdate><volume>35</volume><issue>1</issue><spage>186</spage><epage>194</epage><pages>186-194</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>This paper presents an analytical study of the two-body tangent orbit technique by providing solution-existence conditions. The flight-direction angle is used to describe and solve this problem. Closed-form solutions are obtained for three classic problems: specified arrival flight-direction angle, specified departure flight-direction angle, and cotangent transfers. Not all of the problems admit solutions; thus, closed-form conditions for solution existence are provided by imposing a positive semilatus rectum constraint and a negative transfer-orbit energy (elliptic orbit transfer) constraint. The final solution-existence condition is then provided in terms of the true anomaly range for initial or final orbit. The singularity problem of 180 deg orbit transfer is also analyzed. Several examples are provided to verify the proposed analytical methods. [PUBLISHER ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.53396</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2012-01, Vol.35 (1), p.186-194 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_pascalfrancis_primary_25472057 |
source | Alma/SFX Local Collection |
subjects | Aerospace engineering Arrivals Dynamics Exact sciences and technology Exact solutions Fundamental areas of phenomenology (including applications) Mathematical analysis Orbits Physics Rectum Rocket launches Singularities Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics Tangents Velocity |
title | Analytical Study of Tangent Orbit and Conditions for Its Solution Existence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Study%20of%20Tangent%20Orbit%20and%20Conditions%20for%20Its%20Solution%20Existence&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Zhang,%20Gang&rft.date=2012-01&rft.volume=35&rft.issue=1&rft.spage=186&rft.epage=194&rft.pages=186-194&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.53396&rft_dat=%3Cproquest_pasca%3E2957375791%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346772223&rft_id=info:pmid/&rfr_iscdi=true |