Modeling and Compressing 3-D Facial Expressions Using Geometry Videos
In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2012-01, Vol.22 (1), p.77-90 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 22 |
creator | Jiazhi Xia Dao Thi Phuong Quynh Ying He Xiaoming Chen Hoi, S. C. H. |
description | In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set of algorithms to construct GVs, such as hole filling, geodesic-based face segmentation, expression-invariant parameterization (EIP), and GV compression. Our EIP algorithm can guarantee the exact correspondence of the salient features (eyes, mouth, and nose) in different frames, which leads to GVs with better spatial and temporal coherence than that of the conventional parameterization methods. By taking advantage of this feature, we also propose a new H.264/AVC-based progressive directional prediction scheme, which can provide further 10%-16% bitrate reductions compared to the original H.264/AVC applied for GV compression while maintaining good video quality. Our experimental results on real-world datasets demonstrate that GV is very effective for modeling the high-resolution 3-D expression data, thus providing an attractive way in expression information processing for gaming and movie industry. |
doi_str_mv | 10.1109/TCSVT.2011.2158337 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_25466602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5782944</ieee_id><sourcerecordid>1010900727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-efb3f88bb2827529ff43c33022ed23dab7f2b5525e3cc6258d4674a4ede21bad3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhosoOKd_QG-KIHjTmZwkTXopdZvCxAu33ZY0PZWOtpnJBu7fm33ghVf5eJ_zcnii6JaSEaUke5rnn8v5CAilI6BCMSbPogEVQiUARJyHOxE0USG7jK68XxFCueJyEI3fbYVt03_Fuq_i3HZrh97v3yx5iSfaNLqNxz_HX9v7eHEIp2g73LhdvGwqtP46uqh16_HmdA6jxWQ8z1-T2cf0LX-eJYYTukmwLlmtVFmCAikgq2vODGMEACtglS5lDaUQIJAZk4JQFU8l1xwrBFrqig2jx2Pv2tnvLfpN0TXeYNvqHu3WF5QEGYRIkAG9_4eu7Nb1Ybsio1ymhGRZgOAIGWe9d1gXa9d02u1CU7EXWxzEFnuxxUlsGHo4NWtvdFs73ZvG_02C4GmaEgjc3ZFrEPEvFlJBxjn7Bc1hgCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914760099</pqid></control><display><type>article</type><title>Modeling and Compressing 3-D Facial Expressions Using Geometry Videos</title><source>IEEE Electronic Library (IEL)</source><creator>Jiazhi Xia ; Dao Thi Phuong Quynh ; Ying He ; Xiaoming Chen ; Hoi, S. C. H.</creator><creatorcontrib>Jiazhi Xia ; Dao Thi Phuong Quynh ; Ying He ; Xiaoming Chen ; Hoi, S. C. H.</creatorcontrib><description>In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set of algorithms to construct GVs, such as hole filling, geodesic-based face segmentation, expression-invariant parameterization (EIP), and GV compression. Our EIP algorithm can guarantee the exact correspondence of the salient features (eyes, mouth, and nose) in different frames, which leads to GVs with better spatial and temporal coherence than that of the conventional parameterization methods. By taking advantage of this feature, we also propose a new H.264/AVC-based progressive directional prediction scheme, which can provide further 10%-16% bitrate reductions compared to the original H.264/AVC applied for GV compression while maintaining good video quality. Our experimental results on real-world datasets demonstrate that GV is very effective for modeling the high-resolution 3-D expression data, thus providing an attractive way in expression information processing for gaming and movie industry.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2011.2158337</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>3-D facial expression ; Algorithms ; Applied sciences ; Cameras ; Compressing ; Data processing ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; expression-invariant parameterization ; Face ; Facial ; feature correspondence ; Geometry ; geometry video (GV) ; H264/AVC ; Image coding ; Image processing ; Information theory ; Information, signal and communications theory ; Mathematical models ; Mouth ; Nose ; Parametrization ; Signal and communications theory ; Signal processing ; Signal, noise ; Studies ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teletraffic ; Three dimensional ; Three dimensional displays ; Three dimensional models ; video compression ; Videos</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2012-01, Vol.22 (1), p.77-90</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-efb3f88bb2827529ff43c33022ed23dab7f2b5525e3cc6258d4674a4ede21bad3</citedby><cites>FETCH-LOGICAL-c401t-efb3f88bb2827529ff43c33022ed23dab7f2b5525e3cc6258d4674a4ede21bad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5782944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,4026,27930,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5782944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25466602$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiazhi Xia</creatorcontrib><creatorcontrib>Dao Thi Phuong Quynh</creatorcontrib><creatorcontrib>Ying He</creatorcontrib><creatorcontrib>Xiaoming Chen</creatorcontrib><creatorcontrib>Hoi, S. C. H.</creatorcontrib><title>Modeling and Compressing 3-D Facial Expressions Using Geometry Videos</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set of algorithms to construct GVs, such as hole filling, geodesic-based face segmentation, expression-invariant parameterization (EIP), and GV compression. Our EIP algorithm can guarantee the exact correspondence of the salient features (eyes, mouth, and nose) in different frames, which leads to GVs with better spatial and temporal coherence than that of the conventional parameterization methods. By taking advantage of this feature, we also propose a new H.264/AVC-based progressive directional prediction scheme, which can provide further 10%-16% bitrate reductions compared to the original H.264/AVC applied for GV compression while maintaining good video quality. Our experimental results on real-world datasets demonstrate that GV is very effective for modeling the high-resolution 3-D expression data, thus providing an attractive way in expression information processing for gaming and movie industry.</description><subject>3-D facial expression</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Cameras</subject><subject>Compressing</subject><subject>Data processing</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>expression-invariant parameterization</subject><subject>Face</subject><subject>Facial</subject><subject>feature correspondence</subject><subject>Geometry</subject><subject>geometry video (GV)</subject><subject>H264/AVC</subject><subject>Image coding</subject><subject>Image processing</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>Mouth</subject><subject>Nose</subject><subject>Parametrization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teletraffic</subject><subject>Three dimensional</subject><subject>Three dimensional displays</subject><subject>Three dimensional models</subject><subject>video compression</subject><subject>Videos</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhosoOKd_QG-KIHjTmZwkTXopdZvCxAu33ZY0PZWOtpnJBu7fm33ghVf5eJ_zcnii6JaSEaUke5rnn8v5CAilI6BCMSbPogEVQiUARJyHOxE0USG7jK68XxFCueJyEI3fbYVt03_Fuq_i3HZrh97v3yx5iSfaNLqNxz_HX9v7eHEIp2g73LhdvGwqtP46uqh16_HmdA6jxWQ8z1-T2cf0LX-eJYYTukmwLlmtVFmCAikgq2vODGMEACtglS5lDaUQIJAZk4JQFU8l1xwrBFrqig2jx2Pv2tnvLfpN0TXeYNvqHu3WF5QEGYRIkAG9_4eu7Nb1Ybsio1ymhGRZgOAIGWe9d1gXa9d02u1CU7EXWxzEFnuxxUlsGHo4NWtvdFs73ZvG_02C4GmaEgjc3ZFrEPEvFlJBxjn7Bc1hgCU</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Jiazhi Xia</creator><creator>Dao Thi Phuong Quynh</creator><creator>Ying He</creator><creator>Xiaoming Chen</creator><creator>Hoi, S. C. H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201201</creationdate><title>Modeling and Compressing 3-D Facial Expressions Using Geometry Videos</title><author>Jiazhi Xia ; Dao Thi Phuong Quynh ; Ying He ; Xiaoming Chen ; Hoi, S. C. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-efb3f88bb2827529ff43c33022ed23dab7f2b5525e3cc6258d4674a4ede21bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3-D facial expression</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Cameras</topic><topic>Compressing</topic><topic>Data processing</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>expression-invariant parameterization</topic><topic>Face</topic><topic>Facial</topic><topic>feature correspondence</topic><topic>Geometry</topic><topic>geometry video (GV)</topic><topic>H264/AVC</topic><topic>Image coding</topic><topic>Image processing</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>Mouth</topic><topic>Nose</topic><topic>Parametrization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teletraffic</topic><topic>Three dimensional</topic><topic>Three dimensional displays</topic><topic>Three dimensional models</topic><topic>video compression</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiazhi Xia</creatorcontrib><creatorcontrib>Dao Thi Phuong Quynh</creatorcontrib><creatorcontrib>Ying He</creatorcontrib><creatorcontrib>Xiaoming Chen</creatorcontrib><creatorcontrib>Hoi, S. C. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiazhi Xia</au><au>Dao Thi Phuong Quynh</au><au>Ying He</au><au>Xiaoming Chen</au><au>Hoi, S. C. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Compressing 3-D Facial Expressions Using Geometry Videos</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2012-01</date><risdate>2012</risdate><volume>22</volume><issue>1</issue><spage>77</spage><epage>90</epage><pages>77-90</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set of algorithms to construct GVs, such as hole filling, geodesic-based face segmentation, expression-invariant parameterization (EIP), and GV compression. Our EIP algorithm can guarantee the exact correspondence of the salient features (eyes, mouth, and nose) in different frames, which leads to GVs with better spatial and temporal coherence than that of the conventional parameterization methods. By taking advantage of this feature, we also propose a new H.264/AVC-based progressive directional prediction scheme, which can provide further 10%-16% bitrate reductions compared to the original H.264/AVC applied for GV compression while maintaining good video quality. Our experimental results on real-world datasets demonstrate that GV is very effective for modeling the high-resolution 3-D expression data, thus providing an attractive way in expression information processing for gaming and movie industry.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2011.2158337</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2012-01, Vol.22 (1), p.77-90 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_pascalfrancis_primary_25466602 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D facial expression Algorithms Applied sciences Cameras Compressing Data processing Detection, estimation, filtering, equalization, prediction Exact sciences and technology expression-invariant parameterization Face Facial feature correspondence Geometry geometry video (GV) H264/AVC Image coding Image processing Information theory Information, signal and communications theory Mathematical models Mouth Nose Parametrization Signal and communications theory Signal processing Signal, noise Studies Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Teletraffic Three dimensional Three dimensional displays Three dimensional models video compression Videos |
title | Modeling and Compressing 3-D Facial Expressions Using Geometry Videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Compressing%203-D%20Facial%20Expressions%20Using%20Geometry%20Videos&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Jiazhi%20Xia&rft.date=2012-01&rft.volume=22&rft.issue=1&rft.spage=77&rft.epage=90&rft.pages=77-90&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2011.2158337&rft_dat=%3Cproquest_RIE%3E1010900727%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914760099&rft_id=info:pmid/&rft_ieee_id=5782944&rfr_iscdi=true |