Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels
It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2011-12, Vol.20 (12), p.3376-3382 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3382 |
---|---|
container_issue | 12 |
container_start_page | 3376 |
container_title | IEEE transactions on image processing |
container_volume | 20 |
creator | Chaudhury, K. N. Sage, D. Unser, M. |
description | It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along with the spatial filter, the edge-preserving bilateral filter involves an additional range kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel intensities. This makes the averaging process nonlinear and computationally intensive, particularly when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be leveraged for realizing the bilateral filter in constant time, by using trigonometric range kernels. This is done by generalizing the idea presented by Porikli, i.e., using polynomial kernels. The class of trigonometric kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the quality of approximation achieved using trigonometric kernels is much superior to that obtained by Porikli using polynomials. |
doi_str_mv | 10.1109/TIP.2011.2159234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_25285478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5872028</ieee_id><sourcerecordid>1010896437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-5a8d74259545e6a32030839a6e3e4c8574457684688bc0a22c5902510bae31e83</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRbK3eBS-5CPWQOrMf2c1JtFgtFirSnsN2nZaVNKm76cH_3oSWXmYG5r3H48fYLcIIEfLHxfRzxAFxxFHlXMgz1sdcYgog-Xl7g9KpRpn32FWMPwAoFWaXrMcxUzlw3mdPExubZD7Eh-TFl7ahYMtk4sv28NUmWcZuLoLf1FW9pSZ4l3zZakPJB4WKynjNLta2jHRz3AO2nLwuxu_pbP42HT_PUieFbFJlzbeWXOVKKsqs4CDAiNxmJEg6o7SUSmdGZsasHFjOXddPIawsCSQjBmx4yN2F-ndPsSm2PjoqS1tRvY8FAoLJMyl0K4WD1IU6xkDrYhf81oa_VlR02IoWW9FhK47YWsv9Md1GZ8t1sJXz8eTjihslddfi7qDzRHR6K6M5cCP-AWx6cG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010896437</pqid></control><display><type>article</type><title>Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels</title><source>IEEE Electronic Library (IEL)</source><creator>Chaudhury, K. N. ; Sage, D. ; Unser, M.</creator><creatorcontrib>Chaudhury, K. N. ; Sage, D. ; Unser, M.</creatorcontrib><description>It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along with the spatial filter, the edge-preserving bilateral filter involves an additional range kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel intensities. This makes the averaging process nonlinear and computationally intensive, particularly when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be leveraged for realizing the bilateral filter in constant time, by using trigonometric range kernels. This is done by generalizing the idea presented by Porikli, i.e., using polynomial kernels. The class of trigonometric kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the quality of approximation achieved using trigonometric kernels is much superior to that obtained by Porikli using polynomials.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2011.2159234</identifier><identifier>PMID: 21659022</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Approximation ; Approximation algorithms ; Approximation methods ; Bilateral filter ; constant-time algorithm ; edge-preserving smoothing ; Exact sciences and technology ; Filtering ; Gaussian ; Image edge detection ; Image processing ; Information, signal and communications theory ; Kernel ; Kernels ; Mathematical analysis ; O complexity ; Pixels ; raised cosines ; Signal processing ; Spatial filters ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2011-12, Vol.20 (12), p.3376-3382</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-5a8d74259545e6a32030839a6e3e4c8574457684688bc0a22c5902510bae31e83</citedby><cites>FETCH-LOGICAL-c434t-5a8d74259545e6a32030839a6e3e4c8574457684688bc0a22c5902510bae31e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5872028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5872028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25285478$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhury, K. N.</creatorcontrib><creatorcontrib>Sage, D.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><title>Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along with the spatial filter, the edge-preserving bilateral filter involves an additional range kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel intensities. This makes the averaging process nonlinear and computationally intensive, particularly when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be leveraged for realizing the bilateral filter in constant time, by using trigonometric range kernels. This is done by generalizing the idea presented by Porikli, i.e., using polynomial kernels. The class of trigonometric kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the quality of approximation achieved using trigonometric kernels is much superior to that obtained by Porikli using polynomials.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Bilateral filter</subject><subject>constant-time algorithm</subject><subject>edge-preserving smoothing</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Gaussian</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>O complexity</subject><subject>Pixels</subject><subject>raised cosines</subject><subject>Signal processing</subject><subject>Spatial filters</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRbK3eBS-5CPWQOrMf2c1JtFgtFirSnsN2nZaVNKm76cH_3oSWXmYG5r3H48fYLcIIEfLHxfRzxAFxxFHlXMgz1sdcYgog-Xl7g9KpRpn32FWMPwAoFWaXrMcxUzlw3mdPExubZD7Eh-TFl7ahYMtk4sv28NUmWcZuLoLf1FW9pSZ4l3zZakPJB4WKynjNLta2jHRz3AO2nLwuxu_pbP42HT_PUieFbFJlzbeWXOVKKsqs4CDAiNxmJEg6o7SUSmdGZsasHFjOXddPIawsCSQjBmx4yN2F-ndPsSm2PjoqS1tRvY8FAoLJMyl0K4WD1IU6xkDrYhf81oa_VlR02IoWW9FhK47YWsv9Md1GZ8t1sJXz8eTjihslddfi7qDzRHR6K6M5cCP-AWx6cG4</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Chaudhury, K. N.</creator><creator>Sage, D.</creator><creator>Unser, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels</title><author>Chaudhury, K. N. ; Sage, D. ; Unser, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-5a8d74259545e6a32030839a6e3e4c8574457684688bc0a22c5902510bae31e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Bilateral filter</topic><topic>constant-time algorithm</topic><topic>edge-preserving smoothing</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Gaussian</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>O complexity</topic><topic>Pixels</topic><topic>raised cosines</topic><topic>Signal processing</topic><topic>Spatial filters</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhury, K. N.</creatorcontrib><creatorcontrib>Sage, D.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaudhury, K. N.</au><au>Sage, D.</au><au>Unser, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>20</volume><issue>12</issue><spage>3376</spage><epage>3382</epage><pages>3376-3382</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along with the spatial filter, the edge-preserving bilateral filter involves an additional range kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel intensities. This makes the averaging process nonlinear and computationally intensive, particularly when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be leveraged for realizing the bilateral filter in constant time, by using trigonometric range kernels. This is done by generalizing the idea presented by Porikli, i.e., using polynomial kernels. The class of trigonometric kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the quality of approximation achieved using trigonometric kernels is much superior to that obtained by Porikli using polynomials.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21659022</pmid><doi>10.1109/TIP.2011.2159234</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2011-12, Vol.20 (12), p.3376-3382 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_25285478 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Applied sciences Approximation Approximation algorithms Approximation methods Bilateral filter constant-time algorithm edge-preserving smoothing Exact sciences and technology Filtering Gaussian Image edge detection Image processing Information, signal and communications theory Kernel Kernels Mathematical analysis O complexity Pixels raised cosines Signal processing Spatial filters Telecommunications and information theory |
title | Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20O(1)%20Bilateral%20Filtering%20Using%20Trigonometric%20Range%20Kernels&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Chaudhury,%20K.%20N.&rft.date=2011-12-01&rft.volume=20&rft.issue=12&rft.spage=3376&rft.epage=3382&rft.pages=3376-3382&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2011.2159234&rft_dat=%3Cproquest_RIE%3E1010896437%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010896437&rft_id=info:pmid/21659022&rft_ieee_id=5872028&rfr_iscdi=true |