Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels

It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2011-12, Vol.20 (12), p.3376-3382
Hauptverfasser: Chaudhury, K. N., Sage, D., Unser, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3382
container_issue 12
container_start_page 3376
container_title IEEE transactions on image processing
container_volume 20
creator Chaudhury, K. N.
Sage, D.
Unser, M.
description It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along with the spatial filter, the edge-preserving bilateral filter involves an additional range kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel intensities. This makes the averaging process nonlinear and computationally intensive, particularly when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be leveraged for realizing the bilateral filter in constant time, by using trigonometric range kernels. This is done by generalizing the idea presented by Porikli, i.e., using polynomial kernels. The class of trigonometric kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the quality of approximation achieved using trigonometric kernels is much superior to that obtained by Porikli using polynomials.
doi_str_mv 10.1109/TIP.2011.2159234
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_25285478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5872028</ieee_id><sourcerecordid>1010896437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-5a8d74259545e6a32030839a6e3e4c8574457684688bc0a22c5902510bae31e83</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRbK3eBS-5CPWQOrMf2c1JtFgtFirSnsN2nZaVNKm76cH_3oSWXmYG5r3H48fYLcIIEfLHxfRzxAFxxFHlXMgz1sdcYgog-Xl7g9KpRpn32FWMPwAoFWaXrMcxUzlw3mdPExubZD7Eh-TFl7ahYMtk4sv28NUmWcZuLoLf1FW9pSZ4l3zZakPJB4WKynjNLta2jHRz3AO2nLwuxu_pbP42HT_PUieFbFJlzbeWXOVKKsqs4CDAiNxmJEg6o7SUSmdGZsasHFjOXddPIawsCSQjBmx4yN2F-ndPsSm2PjoqS1tRvY8FAoLJMyl0K4WD1IU6xkDrYhf81oa_VlR02IoWW9FhK47YWsv9Md1GZ8t1sJXz8eTjihslddfi7qDzRHR6K6M5cCP-AWx6cG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010896437</pqid></control><display><type>article</type><title>Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels</title><source>IEEE Electronic Library (IEL)</source><creator>Chaudhury, K. N. ; Sage, D. ; Unser, M.</creator><creatorcontrib>Chaudhury, K. N. ; Sage, D. ; Unser, M.</creatorcontrib><description>It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along with the spatial filter, the edge-preserving bilateral filter involves an additional range kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel intensities. This makes the averaging process nonlinear and computationally intensive, particularly when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be leveraged for realizing the bilateral filter in constant time, by using trigonometric range kernels. This is done by generalizing the idea presented by Porikli, i.e., using polynomial kernels. The class of trigonometric kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the quality of approximation achieved using trigonometric kernels is much superior to that obtained by Porikli using polynomials.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2011.2159234</identifier><identifier>PMID: 21659022</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Approximation ; Approximation algorithms ; Approximation methods ; Bilateral filter ; constant-time algorithm ; edge-preserving smoothing ; Exact sciences and technology ; Filtering ; Gaussian ; Image edge detection ; Image processing ; Information, signal and communications theory ; Kernel ; Kernels ; Mathematical analysis ; O complexity ; Pixels ; raised cosines ; Signal processing ; Spatial filters ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2011-12, Vol.20 (12), p.3376-3382</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-5a8d74259545e6a32030839a6e3e4c8574457684688bc0a22c5902510bae31e83</citedby><cites>FETCH-LOGICAL-c434t-5a8d74259545e6a32030839a6e3e4c8574457684688bc0a22c5902510bae31e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5872028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5872028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25285478$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhury, K. N.</creatorcontrib><creatorcontrib>Sage, D.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><title>Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along with the spatial filter, the edge-preserving bilateral filter involves an additional range kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel intensities. This makes the averaging process nonlinear and computationally intensive, particularly when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be leveraged for realizing the bilateral filter in constant time, by using trigonometric range kernels. This is done by generalizing the idea presented by Porikli, i.e., using polynomial kernels. The class of trigonometric kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the quality of approximation achieved using trigonometric kernels is much superior to that obtained by Porikli using polynomials.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Bilateral filter</subject><subject>constant-time algorithm</subject><subject>edge-preserving smoothing</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Gaussian</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>O complexity</subject><subject>Pixels</subject><subject>raised cosines</subject><subject>Signal processing</subject><subject>Spatial filters</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRbK3eBS-5CPWQOrMf2c1JtFgtFirSnsN2nZaVNKm76cH_3oSWXmYG5r3H48fYLcIIEfLHxfRzxAFxxFHlXMgz1sdcYgog-Xl7g9KpRpn32FWMPwAoFWaXrMcxUzlw3mdPExubZD7Eh-TFl7ahYMtk4sv28NUmWcZuLoLf1FW9pSZ4l3zZakPJB4WKynjNLta2jHRz3AO2nLwuxu_pbP42HT_PUieFbFJlzbeWXOVKKsqs4CDAiNxmJEg6o7SUSmdGZsasHFjOXddPIawsCSQjBmx4yN2F-ndPsSm2PjoqS1tRvY8FAoLJMyl0K4WD1IU6xkDrYhf81oa_VlR02IoWW9FhK47YWsv9Md1GZ8t1sJXz8eTjihslddfi7qDzRHR6K6M5cCP-AWx6cG4</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Chaudhury, K. N.</creator><creator>Sage, D.</creator><creator>Unser, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels</title><author>Chaudhury, K. N. ; Sage, D. ; Unser, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-5a8d74259545e6a32030839a6e3e4c8574457684688bc0a22c5902510bae31e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Bilateral filter</topic><topic>constant-time algorithm</topic><topic>edge-preserving smoothing</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Gaussian</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>O complexity</topic><topic>Pixels</topic><topic>raised cosines</topic><topic>Signal processing</topic><topic>Spatial filters</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhury, K. N.</creatorcontrib><creatorcontrib>Sage, D.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaudhury, K. N.</au><au>Sage, D.</au><au>Unser, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>20</volume><issue>12</issue><spage>3376</spage><epage>3382</epage><pages>3376-3382</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along with the spatial filter, the edge-preserving bilateral filter involves an additional range kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel intensities. This makes the averaging process nonlinear and computationally intensive, particularly when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be leveraged for realizing the bilateral filter in constant time, by using trigonometric range kernels. This is done by generalizing the idea presented by Porikli, i.e., using polynomial kernels. The class of trigonometric kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the quality of approximation achieved using trigonometric kernels is much superior to that obtained by Porikli using polynomials.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21659022</pmid><doi>10.1109/TIP.2011.2159234</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2011-12, Vol.20 (12), p.3376-3382
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_25285478
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Approximation
Approximation algorithms
Approximation methods
Bilateral filter
constant-time algorithm
edge-preserving smoothing
Exact sciences and technology
Filtering
Gaussian
Image edge detection
Image processing
Information, signal and communications theory
Kernel
Kernels
Mathematical analysis
O complexity
Pixels
raised cosines
Signal processing
Spatial filters
Telecommunications and information theory
title Fast O(1) Bilateral Filtering Using Trigonometric Range Kernels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20O(1)%20Bilateral%20Filtering%20Using%20Trigonometric%20Range%20Kernels&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Chaudhury,%20K.%20N.&rft.date=2011-12-01&rft.volume=20&rft.issue=12&rft.spage=3376&rft.epage=3382&rft.pages=3376-3382&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2011.2159234&rft_dat=%3Cproquest_RIE%3E1010896437%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010896437&rft_id=info:pmid/21659022&rft_ieee_id=5872028&rfr_iscdi=true