Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems

This paper proposes a computational technique for the classification of electricity consumption profiles. The methodology is comprised of two steps. In the first one, a C-means-based fuzzy clustering is performed in order to find consumers with similar consumption profiles. Afterwards, a fuzzy class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2011-10, Vol.26 (4), p.2436-2442
Hauptverfasser: Angelos, Eduardo Werley S., Saavedra, O. R., Cortés, O. A. C., de Souza, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2442
container_issue 4
container_start_page 2436
container_title IEEE transactions on power delivery
container_volume 26
creator Angelos, Eduardo Werley S.
Saavedra, O. R.
Cortés, O. A. C.
de Souza, A. N.
description This paper proposes a computational technique for the classification of electricity consumption profiles. The methodology is comprised of two steps. In the first one, a C-means-based fuzzy clustering is performed in order to find consumers with similar consumption profiles. Afterwards, a fuzzy classification is performed using a fuzzy membership matrix and the Euclidean distance to the cluster centers. Then, the distance measures are normalized and ordered, yielding a unitary index score, where the potential fraudsters or users with irregular patterns of consumption have the highest scores. The approach was tested and validated on a real database, showing good performance in tasks of fraud and measurement defect detection.
doi_str_mv 10.1109/TPWRD.2011.2161621
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_24785636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5989884</ieee_id><sourcerecordid>2482473931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-770b146814a5e95d99ea89037c79b78b34787e9b4c334e7efc9c2ac23c7e290c3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhkVpodukf6C9mELpyZvRhy3pGHb7EQg0JCk9Clk7BgVb2koyJf--2g9y6Glg5nmHmYeQDxTWlIK-erz7fb9dM6B0zWhPe0ZfkRXVXLaCgXpNVqBU1yot5VvyLucnABCgYUV2Wyzoio-hsWHX3OwwFD96Z4-tODbXQ4hptpMvHnPjQ7NZcokzpmYTQ17m_QE8Du7i39rd-lySH5Zj_uE5F5zzJXkz2inj-3O9IL--fX3c_Ghvf36_2Vzftk5AV1opYaCiV1TYDnW30xqt0sClk3qQauBCKol6EI5zgRJHpx2zjnEnkWlw_IJ8Oe3dp_hnwVzM7LPDabIB45KN7rni1YGu5Kf_yKe4pFCPM1UShw64qBA7QS7FnBOOZp_8bNOzoWAO2s1RuzloN2ftNfT5vNlmZ6cx2eB8fkmy-kPX875yH0-cR8SXcaeVVkrwf-gMjGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>897305034</pqid></control><display><type>article</type><title>Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Angelos, Eduardo Werley S. ; Saavedra, O. R. ; Cortés, O. A. C. ; de Souza, A. N.</creator><creatorcontrib>Angelos, Eduardo Werley S. ; Saavedra, O. R. ; Cortés, O. A. C. ; de Souza, A. N.</creatorcontrib><description>This paper proposes a computational technique for the classification of electricity consumption profiles. The methodology is comprised of two steps. In the first one, a C-means-based fuzzy clustering is performed in order to find consumers with similar consumption profiles. Afterwards, a fuzzy classification is performed using a fuzzy membership matrix and the Euclidean distance to the cluster centers. Then, the distance measures are normalized and ordered, yielding a unitary index score, where the potential fraudsters or users with irregular patterns of consumption have the highest scores. The approach was tested and validated on a real database, showing good performance in tasks of fraud and measurement defect detection.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2011.2161621</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Abnormalities ; Algorithm design and analysis ; Applied sciences ; Classification ; Clustering methods ; Data mining ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; electricity theft ; Energy consumption ; Exact sciences and technology ; Fraud ; Fuzzy ; fuzzy clustering ; Fuzzy logic ; Fuzzy reasoning ; Fuzzy set theory ; Miscellaneous ; nontechnical losses ; Power demand ; Power networks and lines ; Tasks ; Testing. Reliability. Quality control</subject><ispartof>IEEE transactions on power delivery, 2011-10, Vol.26 (4), p.2436-2442</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-770b146814a5e95d99ea89037c79b78b34787e9b4c334e7efc9c2ac23c7e290c3</citedby><cites>FETCH-LOGICAL-c405t-770b146814a5e95d99ea89037c79b78b34787e9b4c334e7efc9c2ac23c7e290c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5989884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5989884$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24785636$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Angelos, Eduardo Werley S.</creatorcontrib><creatorcontrib>Saavedra, O. R.</creatorcontrib><creatorcontrib>Cortés, O. A. C.</creatorcontrib><creatorcontrib>de Souza, A. N.</creatorcontrib><title>Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>This paper proposes a computational technique for the classification of electricity consumption profiles. The methodology is comprised of two steps. In the first one, a C-means-based fuzzy clustering is performed in order to find consumers with similar consumption profiles. Afterwards, a fuzzy classification is performed using a fuzzy membership matrix and the Euclidean distance to the cluster centers. Then, the distance measures are normalized and ordered, yielding a unitary index score, where the potential fraudsters or users with irregular patterns of consumption have the highest scores. The approach was tested and validated on a real database, showing good performance in tasks of fraud and measurement defect detection.</description><subject>Abnormalities</subject><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Classification</subject><subject>Clustering methods</subject><subject>Data mining</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>electricity theft</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Fraud</subject><subject>Fuzzy</subject><subject>fuzzy clustering</subject><subject>Fuzzy logic</subject><subject>Fuzzy reasoning</subject><subject>Fuzzy set theory</subject><subject>Miscellaneous</subject><subject>nontechnical losses</subject><subject>Power demand</subject><subject>Power networks and lines</subject><subject>Tasks</subject><subject>Testing. Reliability. Quality control</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1r3DAQhkVpodukf6C9mELpyZvRhy3pGHb7EQg0JCk9Clk7BgVb2koyJf--2g9y6Glg5nmHmYeQDxTWlIK-erz7fb9dM6B0zWhPe0ZfkRXVXLaCgXpNVqBU1yot5VvyLucnABCgYUV2Wyzoio-hsWHX3OwwFD96Z4-tODbXQ4hptpMvHnPjQ7NZcokzpmYTQ17m_QE8Du7i39rd-lySH5Zj_uE5F5zzJXkz2inj-3O9IL--fX3c_Ghvf36_2Vzftk5AV1opYaCiV1TYDnW30xqt0sClk3qQauBCKol6EI5zgRJHpx2zjnEnkWlw_IJ8Oe3dp_hnwVzM7LPDabIB45KN7rni1YGu5Kf_yKe4pFCPM1UShw64qBA7QS7FnBOOZp_8bNOzoWAO2s1RuzloN2ftNfT5vNlmZ6cx2eB8fkmy-kPX875yH0-cR8SXcaeVVkrwf-gMjGc</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Angelos, Eduardo Werley S.</creator><creator>Saavedra, O. R.</creator><creator>Cortés, O. A. C.</creator><creator>de Souza, A. N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20111001</creationdate><title>Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems</title><author>Angelos, Eduardo Werley S. ; Saavedra, O. R. ; Cortés, O. A. C. ; de Souza, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-770b146814a5e95d99ea89037c79b78b34787e9b4c334e7efc9c2ac23c7e290c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Abnormalities</topic><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Classification</topic><topic>Clustering methods</topic><topic>Data mining</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>electricity theft</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Fraud</topic><topic>Fuzzy</topic><topic>fuzzy clustering</topic><topic>Fuzzy logic</topic><topic>Fuzzy reasoning</topic><topic>Fuzzy set theory</topic><topic>Miscellaneous</topic><topic>nontechnical losses</topic><topic>Power demand</topic><topic>Power networks and lines</topic><topic>Tasks</topic><topic>Testing. Reliability. Quality control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelos, Eduardo Werley S.</creatorcontrib><creatorcontrib>Saavedra, O. R.</creatorcontrib><creatorcontrib>Cortés, O. A. C.</creatorcontrib><creatorcontrib>de Souza, A. N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Angelos, Eduardo Werley S.</au><au>Saavedra, O. R.</au><au>Cortés, O. A. C.</au><au>de Souza, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>26</volume><issue>4</issue><spage>2436</spage><epage>2442</epage><pages>2436-2442</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>This paper proposes a computational technique for the classification of electricity consumption profiles. The methodology is comprised of two steps. In the first one, a C-means-based fuzzy clustering is performed in order to find consumers with similar consumption profiles. Afterwards, a fuzzy classification is performed using a fuzzy membership matrix and the Euclidean distance to the cluster centers. Then, the distance measures are normalized and ordered, yielding a unitary index score, where the potential fraudsters or users with irregular patterns of consumption have the highest scores. The approach was tested and validated on a real database, showing good performance in tasks of fraud and measurement defect detection.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2011.2161621</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2011-10, Vol.26 (4), p.2436-2442
issn 0885-8977
1937-4208
language eng
recordid cdi_pascalfrancis_primary_24785636
source IEEE Electronic Library (IEL)
subjects Abnormalities
Algorithm design and analysis
Applied sciences
Classification
Clustering methods
Data mining
Electrical engineering. Electrical power engineering
Electrical power engineering
electricity theft
Energy consumption
Exact sciences and technology
Fraud
Fuzzy
fuzzy clustering
Fuzzy logic
Fuzzy reasoning
Fuzzy set theory
Miscellaneous
nontechnical losses
Power demand
Power networks and lines
Tasks
Testing. Reliability. Quality control
title Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Identification%20of%20Abnormalities%20in%20Customer%20Consumptions%20in%20Power%20Distribution%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Angelos,%20Eduardo%20Werley%20S.&rft.date=2011-10-01&rft.volume=26&rft.issue=4&rft.spage=2436&rft.epage=2442&rft.pages=2436-2442&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2011.2161621&rft_dat=%3Cproquest_RIE%3E2482473931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=897305034&rft_id=info:pmid/&rft_ieee_id=5989884&rfr_iscdi=true