Simultaneous Communication in Noisy Channels
A sender wishes to broadcast a message of length n over an alphabet to r users, where each user i, 1 ≤ i ≤ r, should be able to receive one m, possible messages. The broadcast channel has noise for each of the users (possibly different noise for different users), who cannot distinguish between some...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2011-10, Vol.57 (10), p.6455-6462 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6462 |
---|---|
container_issue | 10 |
container_start_page | 6455 |
container_title | IEEE transactions on information theory |
container_volume | 57 |
creator | Weinstein, A. |
description | A sender wishes to broadcast a message of length n over an alphabet to r users, where each user i, 1 ≤ i ≤ r, should be able to receive one m, possible messages. The broadcast channel has noise for each of the users (possibly different noise for different users), who cannot distinguish between some pairs of letters. The vector (m 1 , m 2 ,...,m r ) (n) is said to be feasible if length n encoding and decoding schemes exist enabling every user to decode his message. A rate vector (R 1 , R 2 ...,R r ) is feasible if there exists a sequence of feasible vectors (m 1 , m 2 ...,m r ) (n) such that R i = lim n→∞ Log 2 m i /n for all i. We determine the feasible rate vectors for several different scenarios and investigate some of their properties. An interesting case discussed is when one user can only distinguish between all the letters in a subset of the alphabet. Tight restrictions on the feasible rate vectors for some specific noise types for the other users are provided. The simplest nontrivial cases of two users and alphabet of size three are fully characterized. To this end a more general previously known result, to which we sketch an alternative proof, is used. This problem generalizes the study of the Shannon capacity of a graph, by considering more than a single user. |
doi_str_mv | 10.1109/TIT.2011.2165798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_24707082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6034752</ieee_id><sourcerecordid>2495940931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-90f69872b40e233ddf17adece07ed0e76168f87aaff592abff08647ba2ed4fc3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcgeDNx9nv3KMGPQtGDuS_bZBe3JJuaTQ7996a09DQM87zvwIPQPYYCY9Av1aoqCGBcECy41OoCLTDnMteCs0u0AMAq14ypa3ST0nZeGcdkgZ5_Qje1o42un1JW9l03xVDbMfQxCzH76kPaZ-WvjdG16RZdedsmd3eaS1S9v1XlZ77-_liVr-u8poKMuQYvtJJkw8ARSpvGY2kbVzuQrgEnBRbKK2mt91wTu_EelGByY4lrmK_pEj0ea3dD_ze5NJptPw1x_mg0gOCKKjpDcITqoU9pcN7shtDZYW8wmIMRMxsxByPmZGSOPJ16bapt6wcb65DOOcIkSFBk5h6OXHDOnc8CKJOc0H-X-Gkz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900658383</pqid></control><display><type>article</type><title>Simultaneous Communication in Noisy Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Weinstein, A.</creator><creatorcontrib>Weinstein, A.</creatorcontrib><description>A sender wishes to broadcast a message of length n over an alphabet to r users, where each user i, 1 ≤ i ≤ r, should be able to receive one m, possible messages. The broadcast channel has noise for each of the users (possibly different noise for different users), who cannot distinguish between some pairs of letters. The vector (m 1 , m 2 ,...,m r ) (n) is said to be feasible if length n encoding and decoding schemes exist enabling every user to decode his message. A rate vector (R 1 , R 2 ...,R r ) is feasible if there exists a sequence of feasible vectors (m 1 , m 2 ...,m r ) (n) such that R i = lim n→∞ Log 2 m i /n for all i. We determine the feasible rate vectors for several different scenarios and investigate some of their properties. An interesting case discussed is when one user can only distinguish between all the letters in a subset of the alphabet. Tight restrictions on the feasible rate vectors for some specific noise types for the other users are provided. The simplest nontrivial cases of two users and alphabet of size three are fully characterized. To this end a more general previously known result, to which we sketch an alternative proof, is used. This problem generalizes the study of the Shannon capacity of a graph, by considering more than a single user.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2011.2165798</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Broadcast channels ; Channel coding ; Codes ; Coding, codes ; Communication channels ; Data transmission ; Electric noise ; Entropy ; Exact sciences and technology ; graph powers ; Information theory ; Information, signal and communications theory ; Noise ; Noise measurement ; Probability distribution ; Random variables ; Shannon capacity ; Signal and communications theory ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on information theory, 2011-10, Vol.57 (10), p.6455-6462</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-90f69872b40e233ddf17adece07ed0e76168f87aaff592abff08647ba2ed4fc3</citedby><cites>FETCH-LOGICAL-c362t-90f69872b40e233ddf17adece07ed0e76168f87aaff592abff08647ba2ed4fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6034752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6034752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24707082$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinstein, A.</creatorcontrib><title>Simultaneous Communication in Noisy Channels</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A sender wishes to broadcast a message of length n over an alphabet to r users, where each user i, 1 ≤ i ≤ r, should be able to receive one m, possible messages. The broadcast channel has noise for each of the users (possibly different noise for different users), who cannot distinguish between some pairs of letters. The vector (m 1 , m 2 ,...,m r ) (n) is said to be feasible if length n encoding and decoding schemes exist enabling every user to decode his message. A rate vector (R 1 , R 2 ...,R r ) is feasible if there exists a sequence of feasible vectors (m 1 , m 2 ...,m r ) (n) such that R i = lim n→∞ Log 2 m i /n for all i. We determine the feasible rate vectors for several different scenarios and investigate some of their properties. An interesting case discussed is when one user can only distinguish between all the letters in a subset of the alphabet. Tight restrictions on the feasible rate vectors for some specific noise types for the other users are provided. The simplest nontrivial cases of two users and alphabet of size three are fully characterized. To this end a more general previously known result, to which we sketch an alternative proof, is used. This problem generalizes the study of the Shannon capacity of a graph, by considering more than a single user.</description><subject>Applied sciences</subject><subject>Broadcast channels</subject><subject>Channel coding</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Communication channels</subject><subject>Data transmission</subject><subject>Electric noise</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>graph powers</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Shannon capacity</subject><subject>Signal and communications theory</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcgeDNx9nv3KMGPQtGDuS_bZBe3JJuaTQ7996a09DQM87zvwIPQPYYCY9Av1aoqCGBcECy41OoCLTDnMteCs0u0AMAq14ypa3ST0nZeGcdkgZ5_Qje1o42un1JW9l03xVDbMfQxCzH76kPaZ-WvjdG16RZdedsmd3eaS1S9v1XlZ77-_liVr-u8poKMuQYvtJJkw8ARSpvGY2kbVzuQrgEnBRbKK2mt91wTu_EelGByY4lrmK_pEj0ea3dD_ze5NJptPw1x_mg0gOCKKjpDcITqoU9pcN7shtDZYW8wmIMRMxsxByPmZGSOPJ16bapt6wcb65DOOcIkSFBk5h6OXHDOnc8CKJOc0H-X-Gkz</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Weinstein, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111001</creationdate><title>Simultaneous Communication in Noisy Channels</title><author>Weinstein, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-90f69872b40e233ddf17adece07ed0e76168f87aaff592abff08647ba2ed4fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Broadcast channels</topic><topic>Channel coding</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Communication channels</topic><topic>Data transmission</topic><topic>Electric noise</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>graph powers</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Shannon capacity</topic><topic>Signal and communications theory</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinstein, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weinstein, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Communication in Noisy Channels</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>57</volume><issue>10</issue><spage>6455</spage><epage>6462</epage><pages>6455-6462</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A sender wishes to broadcast a message of length n over an alphabet to r users, where each user i, 1 ≤ i ≤ r, should be able to receive one m, possible messages. The broadcast channel has noise for each of the users (possibly different noise for different users), who cannot distinguish between some pairs of letters. The vector (m 1 , m 2 ,...,m r ) (n) is said to be feasible if length n encoding and decoding schemes exist enabling every user to decode his message. A rate vector (R 1 , R 2 ...,R r ) is feasible if there exists a sequence of feasible vectors (m 1 , m 2 ...,m r ) (n) such that R i = lim n→∞ Log 2 m i /n for all i. We determine the feasible rate vectors for several different scenarios and investigate some of their properties. An interesting case discussed is when one user can only distinguish between all the letters in a subset of the alphabet. Tight restrictions on the feasible rate vectors for some specific noise types for the other users are provided. The simplest nontrivial cases of two users and alphabet of size three are fully characterized. To this end a more general previously known result, to which we sketch an alternative proof, is used. This problem generalizes the study of the Shannon capacity of a graph, by considering more than a single user.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2011.2165798</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2011-10, Vol.57 (10), p.6455-6462 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_pascalfrancis_primary_24707082 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Broadcast channels Channel coding Codes Coding, codes Communication channels Data transmission Electric noise Entropy Exact sciences and technology graph powers Information theory Information, signal and communications theory Noise Noise measurement Probability distribution Random variables Shannon capacity Signal and communications theory Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Transmission and modulation (techniques and equipments) |
title | Simultaneous Communication in Noisy Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Communication%20in%20Noisy%20Channels&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Weinstein,%20A.&rft.date=2011-10-01&rft.volume=57&rft.issue=10&rft.spage=6455&rft.epage=6462&rft.pages=6455-6462&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2011.2165798&rft_dat=%3Cproquest_RIE%3E2495940931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900658383&rft_id=info:pmid/&rft_ieee_id=6034752&rfr_iscdi=true |