Dual representation of monotone convex functions on L^{0}

We study monotone convex functions ψ : L⁰ (Ω, F, ℙ) → (—∞,∞] and derive a dual representation as well as conditions that ensure the existence of a σ-additive subgradient. The results are motivated by applications in economic agents' choice theory.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2011-11, Vol.139 (11), p.4073-4086
Hauptverfasser: KUPPER, MICHAEL, SVINDLAND, GREGOR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4086
container_issue 11
container_start_page 4073
container_title Proceedings of the American Mathematical Society
container_volume 139
creator KUPPER, MICHAEL
SVINDLAND, GREGOR
description We study monotone convex functions ψ : L⁰ (Ω, F, ℙ) → (—∞,∞] and derive a dual representation as well as conditions that ensure the existence of a σ-additive subgradient. The results are motivated by applications in economic agents' choice theory.
doi_str_mv 10.1090/S0002-9939-2011-10835-9
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24591496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41291972</jstor_id><sourcerecordid>41291972</sourcerecordid><originalsourceid>FETCH-LOGICAL-a165t-a908198ac09375f8a0069e1103e752de7c9df9e4d4bbc6e98d5d1e5ea363d7d03</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs_QdyLx-hMsslmjlI_oeBBvRrSJAstbbZstqKI_93dVupp3uF5Zw4PYxcIVwgE1y8AIDiRJC4AkSMYqTgdsFGfDNdG6EM22peO2UnOi35FKqsRo9uNWxZtXLcxx9S5bt6koqmLVZOarkmx8E36iJ9FvUl-YLno-fT9G35O2VHtljme_c0xe7u_e5088unzw9PkZsodatVxR2CQjPNAslK1cQCaIiLIWCkRYuUp1BTLUM5mXkcyQQWMKjqpZagCyDG73P1du-zdsm5d8vNs1-185dovK0pFWJLue-e73iJ3TbvnJQpCqkTPxY671f81gh0k2q1EO_ixg0S7lWhJ_gL5SmNe</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual representation of monotone convex functions on L^{0}</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><creator>KUPPER, MICHAEL ; SVINDLAND, GREGOR</creator><creatorcontrib>KUPPER, MICHAEL ; SVINDLAND, GREGOR</creatorcontrib><description>We study monotone convex functions ψ : L⁰ (Ω, F, ℙ) → (—∞,∞] and derive a dual representation as well as conditions that ensure the existence of a σ-additive subgradient. The results are motivated by applications in economic agents' choice theory.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-2011-10835-9</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Algebra ; Banach space ; Convexity ; Economic theory ; Exact sciences and technology ; General mathematics ; General, history and biography ; Mathematical functions ; Mathematical monotonicity ; Mathematics ; Number theory ; Perceptron convergence procedure ; Preprints ; Random variables ; Sciences and techniques of general use ; Topology</subject><ispartof>Proceedings of the American Mathematical Society, 2011-11, Vol.139 (11), p.4073-4086</ispartof><rights>Copyright 2011, American Mathematical Society</rights><rights>2011 American Mathematical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2011-10835-9S0002-9939-2011-10835-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2011-10835-9$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,777,781,800,829,23305,23309,27905,27906,57998,58002,58231,58235,77585,77587,77595,77597</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24591496$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KUPPER, MICHAEL</creatorcontrib><creatorcontrib>SVINDLAND, GREGOR</creatorcontrib><title>Dual representation of monotone convex functions on L^{0}</title><title>Proceedings of the American Mathematical Society</title><description>We study monotone convex functions ψ : L⁰ (Ω, F, ℙ) → (—∞,∞] and derive a dual representation as well as conditions that ensure the existence of a σ-additive subgradient. The results are motivated by applications in economic agents' choice theory.</description><subject>Algebra</subject><subject>Banach space</subject><subject>Convexity</subject><subject>Economic theory</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Mathematical functions</subject><subject>Mathematical monotonicity</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Perceptron convergence procedure</subject><subject>Preprints</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Topology</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKs_QdyLx-hMsslmjlI_oeBBvRrSJAstbbZstqKI_93dVupp3uF5Zw4PYxcIVwgE1y8AIDiRJC4AkSMYqTgdsFGfDNdG6EM22peO2UnOi35FKqsRo9uNWxZtXLcxx9S5bt6koqmLVZOarkmx8E36iJ9FvUl-YLno-fT9G35O2VHtljme_c0xe7u_e5088unzw9PkZsodatVxR2CQjPNAslK1cQCaIiLIWCkRYuUp1BTLUM5mXkcyQQWMKjqpZagCyDG73P1du-zdsm5d8vNs1-185dovK0pFWJLue-e73iJ3TbvnJQpCqkTPxY671f81gh0k2q1EO_ixg0S7lWhJ_gL5SmNe</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>KUPPER, MICHAEL</creator><creator>SVINDLAND, GREGOR</creator><general>American Mathematical Society</general><scope>IQODW</scope></search><sort><creationdate>201111</creationdate><title>Dual representation of monotone convex functions on L^{0}</title><author>KUPPER, MICHAEL ; SVINDLAND, GREGOR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a165t-a908198ac09375f8a0069e1103e752de7c9df9e4d4bbc6e98d5d1e5ea363d7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Banach space</topic><topic>Convexity</topic><topic>Economic theory</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Mathematical functions</topic><topic>Mathematical monotonicity</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Perceptron convergence procedure</topic><topic>Preprints</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KUPPER, MICHAEL</creatorcontrib><creatorcontrib>SVINDLAND, GREGOR</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KUPPER, MICHAEL</au><au>SVINDLAND, GREGOR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual representation of monotone convex functions on L^{0}</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2011-11</date><risdate>2011</risdate><volume>139</volume><issue>11</issue><spage>4073</spage><epage>4086</epage><pages>4073-4086</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>We study monotone convex functions ψ : L⁰ (Ω, F, ℙ) → (—∞,∞] and derive a dual representation as well as conditions that ensure the existence of a σ-additive subgradient. The results are motivated by applications in economic agents' choice theory.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-2011-10835-9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2011-11, Vol.139 (11), p.4073-4086
issn 0002-9939
1088-6826
language eng
recordid cdi_pascalfrancis_primary_24591496
source American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications
subjects Algebra
Banach space
Convexity
Economic theory
Exact sciences and technology
General mathematics
General, history and biography
Mathematical functions
Mathematical monotonicity
Mathematics
Number theory
Perceptron convergence procedure
Preprints
Random variables
Sciences and techniques of general use
Topology
title Dual representation of monotone convex functions on L^{0}
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20representation%20of%20monotone%20convex%20functions%20on%20L%5E%7B0%7D&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=KUPPER,%20MICHAEL&rft.date=2011-11&rft.volume=139&rft.issue=11&rft.spage=4073&rft.epage=4086&rft.pages=4073-4086&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.1090/S0002-9939-2011-10835-9&rft_dat=%3Cjstor_pasca%3E41291972%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41291972&rfr_iscdi=true