Dual representation of monotone convex functions on L^{0}
We study monotone convex functions ψ : L⁰ (Ω, F, ℙ) → (—∞,∞] and derive a dual representation as well as conditions that ensure the existence of a σ-additive subgradient. The results are motivated by applications in economic agents' choice theory.
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2011-11, Vol.139 (11), p.4073-4086 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4086 |
---|---|
container_issue | 11 |
container_start_page | 4073 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 139 |
creator | KUPPER, MICHAEL SVINDLAND, GREGOR |
description | We study monotone convex functions ψ : L⁰ (Ω, F, ℙ) → (—∞,∞] and derive a dual representation as well as conditions that ensure the existence of a σ-additive subgradient. The results are motivated by applications in economic agents' choice theory. |
doi_str_mv | 10.1090/S0002-9939-2011-10835-9 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24591496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41291972</jstor_id><sourcerecordid>41291972</sourcerecordid><originalsourceid>FETCH-LOGICAL-a165t-a908198ac09375f8a0069e1103e752de7c9df9e4d4bbc6e98d5d1e5ea363d7d03</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs_QdyLx-hMsslmjlI_oeBBvRrSJAstbbZstqKI_93dVupp3uF5Zw4PYxcIVwgE1y8AIDiRJC4AkSMYqTgdsFGfDNdG6EM22peO2UnOi35FKqsRo9uNWxZtXLcxx9S5bt6koqmLVZOarkmx8E36iJ9FvUl-YLno-fT9G35O2VHtljme_c0xe7u_e5088unzw9PkZsodatVxR2CQjPNAslK1cQCaIiLIWCkRYuUp1BTLUM5mXkcyQQWMKjqpZagCyDG73P1du-zdsm5d8vNs1-185dovK0pFWJLue-e73iJ3TbvnJQpCqkTPxY671f81gh0k2q1EO_ixg0S7lWhJ_gL5SmNe</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual representation of monotone convex functions on L^{0}</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><creator>KUPPER, MICHAEL ; SVINDLAND, GREGOR</creator><creatorcontrib>KUPPER, MICHAEL ; SVINDLAND, GREGOR</creatorcontrib><description>We study monotone convex functions ψ : L⁰ (Ω, F, ℙ) → (—∞,∞] and derive a dual representation as well as conditions that ensure the existence of a σ-additive subgradient. The results are motivated by applications in economic agents' choice theory.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-2011-10835-9</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Algebra ; Banach space ; Convexity ; Economic theory ; Exact sciences and technology ; General mathematics ; General, history and biography ; Mathematical functions ; Mathematical monotonicity ; Mathematics ; Number theory ; Perceptron convergence procedure ; Preprints ; Random variables ; Sciences and techniques of general use ; Topology</subject><ispartof>Proceedings of the American Mathematical Society, 2011-11, Vol.139 (11), p.4073-4086</ispartof><rights>Copyright 2011, American Mathematical Society</rights><rights>2011 American Mathematical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2011-10835-9S0002-9939-2011-10835-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2011-10835-9$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,777,781,800,829,23305,23309,27905,27906,57998,58002,58231,58235,77585,77587,77595,77597</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24591496$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KUPPER, MICHAEL</creatorcontrib><creatorcontrib>SVINDLAND, GREGOR</creatorcontrib><title>Dual representation of monotone convex functions on L^{0}</title><title>Proceedings of the American Mathematical Society</title><description>We study monotone convex functions ψ : L⁰ (Ω, F, ℙ) → (—∞,∞] and derive a dual representation as well as conditions that ensure the existence of a σ-additive subgradient. The results are motivated by applications in economic agents' choice theory.</description><subject>Algebra</subject><subject>Banach space</subject><subject>Convexity</subject><subject>Economic theory</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Mathematical functions</subject><subject>Mathematical monotonicity</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Perceptron convergence procedure</subject><subject>Preprints</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Topology</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKs_QdyLx-hMsslmjlI_oeBBvRrSJAstbbZstqKI_93dVupp3uF5Zw4PYxcIVwgE1y8AIDiRJC4AkSMYqTgdsFGfDNdG6EM22peO2UnOi35FKqsRo9uNWxZtXLcxx9S5bt6koqmLVZOarkmx8E36iJ9FvUl-YLno-fT9G35O2VHtljme_c0xe7u_e5088unzw9PkZsodatVxR2CQjPNAslK1cQCaIiLIWCkRYuUp1BTLUM5mXkcyQQWMKjqpZagCyDG73P1du-zdsm5d8vNs1-185dovK0pFWJLue-e73iJ3TbvnJQpCqkTPxY671f81gh0k2q1EO_ixg0S7lWhJ_gL5SmNe</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>KUPPER, MICHAEL</creator><creator>SVINDLAND, GREGOR</creator><general>American Mathematical Society</general><scope>IQODW</scope></search><sort><creationdate>201111</creationdate><title>Dual representation of monotone convex functions on L^{0}</title><author>KUPPER, MICHAEL ; SVINDLAND, GREGOR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a165t-a908198ac09375f8a0069e1103e752de7c9df9e4d4bbc6e98d5d1e5ea363d7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Banach space</topic><topic>Convexity</topic><topic>Economic theory</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Mathematical functions</topic><topic>Mathematical monotonicity</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Perceptron convergence procedure</topic><topic>Preprints</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KUPPER, MICHAEL</creatorcontrib><creatorcontrib>SVINDLAND, GREGOR</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KUPPER, MICHAEL</au><au>SVINDLAND, GREGOR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual representation of monotone convex functions on L^{0}</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2011-11</date><risdate>2011</risdate><volume>139</volume><issue>11</issue><spage>4073</spage><epage>4086</epage><pages>4073-4086</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>We study monotone convex functions ψ : L⁰ (Ω, F, ℙ) → (—∞,∞] and derive a dual representation as well as conditions that ensure the existence of a σ-additive subgradient. The results are motivated by applications in economic agents' choice theory.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-2011-10835-9</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2011-11, Vol.139 (11), p.4073-4086 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_pascalfrancis_primary_24591496 |
source | American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications |
subjects | Algebra Banach space Convexity Economic theory Exact sciences and technology General mathematics General, history and biography Mathematical functions Mathematical monotonicity Mathematics Number theory Perceptron convergence procedure Preprints Random variables Sciences and techniques of general use Topology |
title | Dual representation of monotone convex functions on L^{0} |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20representation%20of%20monotone%20convex%20functions%20on%20L%5E%7B0%7D&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=KUPPER,%20MICHAEL&rft.date=2011-11&rft.volume=139&rft.issue=11&rft.spage=4073&rft.epage=4086&rft.pages=4073-4086&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.1090/S0002-9939-2011-10835-9&rft_dat=%3Cjstor_pasca%3E41291972%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41291972&rfr_iscdi=true |