Thermodynamic Modeling of the NH3–CO2–H2O System with Electrolyte NRTL Model

To facilitate simulation, design, and optimization of chilled ammonia processes for CO2 capture, we develop a thermodynamic model for the NH3–CO2–H2O system with the electrolyte NRTL activity coefficient model. The thermodynamic model explicitly accounts for the solution chemistry which includes dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2011-10, Vol.50 (19), p.11406-11421
Hauptverfasser: Que, Huiling, Chen, Chau-Chyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11421
container_issue 19
container_start_page 11406
container_title Industrial & engineering chemistry research
container_volume 50
creator Que, Huiling
Chen, Chau-Chyun
description To facilitate simulation, design, and optimization of chilled ammonia processes for CO2 capture, we develop a thermodynamic model for the NH3–CO2–H2O system with the electrolyte NRTL activity coefficient model. The thermodynamic model explicitly accounts for the solution chemistry which includes dissociations of H2O, NH3, and CO2, formation of ammonium carbamate, and precipitation of ammonium bicarbonate. The electrolyte NRTL activity coefficient model parameters are identified by fitting against selected experimental data for vapor–liquid equilibrium, heat of solution, and heat capacity of the NH3–H2O binary, solid–liquid equilibrium of the NH4HCO3–H2O binary, and vapor–liquid equilibrium and speciation of the NH3–CO2–H2O ternary. The model is further validated with additional VLE, speciation, heat capacity, and heat of solution data for the NH3–CO2–H2O system. Overall the model satisfactorily represents the thermodynamic properties of the NH3–CO2–H2O system with temperature up to 473 K, pressure up to 7 MPa, NH3 concentration up to 30 wt %, and CO2 loading up to unity.
doi_str_mv 10.1021/ie201276m
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24573337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f1870401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a145t-a23841c7e1ef84a1f0c049849aa56b4c05ca2ded2089012854e3ff29053c5f173</originalsourceid><addsrcrecordid>eNpNUM1Kw0AYXETBWj34BnvxGP3252s2RynVCNGK1nP43OzalPyUbERy6zv4hj6JkYp4mbnMDDPD2LmASwFSXJVOgpDxrD5gE4ESIgSNh2wCxpgIjcFjdhLCBgAQtZ6wx9XadXVbDA3VpeX3beGqsnnjref92vGHVH3tPudLOWIql_x5CL2r-UfZr_micrbv2mroR93TKtubT9mRpyq4s1-espebxWqeRtny9m5-nUUkNPYRSWW0sLETzhtNwoMFnRidEOHsVVtAS7JwhQSTjIMMaqe8lwmgsuhFrKbsYp-7pWCp8h01tgz5titr6oZcaoyVUv90ZEO-ad-7ZmyVC8h_7sr_7lLfyqVcdA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamic Modeling of the NH3–CO2–H2O System with Electrolyte NRTL Model</title><source>ACS Publications</source><creator>Que, Huiling ; Chen, Chau-Chyun</creator><creatorcontrib>Que, Huiling ; Chen, Chau-Chyun</creatorcontrib><description>To facilitate simulation, design, and optimization of chilled ammonia processes for CO2 capture, we develop a thermodynamic model for the NH3–CO2–H2O system with the electrolyte NRTL activity coefficient model. The thermodynamic model explicitly accounts for the solution chemistry which includes dissociations of H2O, NH3, and CO2, formation of ammonium carbamate, and precipitation of ammonium bicarbonate. The electrolyte NRTL activity coefficient model parameters are identified by fitting against selected experimental data for vapor–liquid equilibrium, heat of solution, and heat capacity of the NH3–H2O binary, solid–liquid equilibrium of the NH4HCO3–H2O binary, and vapor–liquid equilibrium and speciation of the NH3–CO2–H2O ternary. The model is further validated with additional VLE, speciation, heat capacity, and heat of solution data for the NH3–CO2–H2O system. Overall the model satisfactorily represents the thermodynamic properties of the NH3–CO2–H2O system with temperature up to 473 K, pressure up to 7 MPa, NH3 concentration up to 30 wt %, and CO2 loading up to unity.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie201276m</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; General Research</subject><ispartof>Industrial &amp; engineering chemistry research, 2011-10, Vol.50 (19), p.11406-11421</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie201276m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie201276m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24573337$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Que, Huiling</creatorcontrib><creatorcontrib>Chen, Chau-Chyun</creatorcontrib><title>Thermodynamic Modeling of the NH3–CO2–H2O System with Electrolyte NRTL Model</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>To facilitate simulation, design, and optimization of chilled ammonia processes for CO2 capture, we develop a thermodynamic model for the NH3–CO2–H2O system with the electrolyte NRTL activity coefficient model. The thermodynamic model explicitly accounts for the solution chemistry which includes dissociations of H2O, NH3, and CO2, formation of ammonium carbamate, and precipitation of ammonium bicarbonate. The electrolyte NRTL activity coefficient model parameters are identified by fitting against selected experimental data for vapor–liquid equilibrium, heat of solution, and heat capacity of the NH3–H2O binary, solid–liquid equilibrium of the NH4HCO3–H2O binary, and vapor–liquid equilibrium and speciation of the NH3–CO2–H2O ternary. The model is further validated with additional VLE, speciation, heat capacity, and heat of solution data for the NH3–CO2–H2O system. Overall the model satisfactorily represents the thermodynamic properties of the NH3–CO2–H2O system with temperature up to 473 K, pressure up to 7 MPa, NH3 concentration up to 30 wt %, and CO2 loading up to unity.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>General Research</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNUM1Kw0AYXETBWj34BnvxGP3252s2RynVCNGK1nP43OzalPyUbERy6zv4hj6JkYp4mbnMDDPD2LmASwFSXJVOgpDxrD5gE4ESIgSNh2wCxpgIjcFjdhLCBgAQtZ6wx9XadXVbDA3VpeX3beGqsnnjref92vGHVH3tPudLOWIql_x5CL2r-UfZr_micrbv2mroR93TKtubT9mRpyq4s1-espebxWqeRtny9m5-nUUkNPYRSWW0sLETzhtNwoMFnRidEOHsVVtAS7JwhQSTjIMMaqe8lwmgsuhFrKbsYp-7pWCp8h01tgz5titr6oZcaoyVUv90ZEO-ad-7ZmyVC8h_7sr_7lLfyqVcdA</recordid><startdate>20111005</startdate><enddate>20111005</enddate><creator>Que, Huiling</creator><creator>Chen, Chau-Chyun</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20111005</creationdate><title>Thermodynamic Modeling of the NH3–CO2–H2O System with Electrolyte NRTL Model</title><author>Que, Huiling ; Chen, Chau-Chyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a145t-a23841c7e1ef84a1f0c049849aa56b4c05ca2ded2089012854e3ff29053c5f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>General Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Que, Huiling</creatorcontrib><creatorcontrib>Chen, Chau-Chyun</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Que, Huiling</au><au>Chen, Chau-Chyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic Modeling of the NH3–CO2–H2O System with Electrolyte NRTL Model</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2011-10-05</date><risdate>2011</risdate><volume>50</volume><issue>19</issue><spage>11406</spage><epage>11421</epage><pages>11406-11421</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>To facilitate simulation, design, and optimization of chilled ammonia processes for CO2 capture, we develop a thermodynamic model for the NH3–CO2–H2O system with the electrolyte NRTL activity coefficient model. The thermodynamic model explicitly accounts for the solution chemistry which includes dissociations of H2O, NH3, and CO2, formation of ammonium carbamate, and precipitation of ammonium bicarbonate. The electrolyte NRTL activity coefficient model parameters are identified by fitting against selected experimental data for vapor–liquid equilibrium, heat of solution, and heat capacity of the NH3–H2O binary, solid–liquid equilibrium of the NH4HCO3–H2O binary, and vapor–liquid equilibrium and speciation of the NH3–CO2–H2O ternary. The model is further validated with additional VLE, speciation, heat capacity, and heat of solution data for the NH3–CO2–H2O system. Overall the model satisfactorily represents the thermodynamic properties of the NH3–CO2–H2O system with temperature up to 473 K, pressure up to 7 MPa, NH3 concentration up to 30 wt %, and CO2 loading up to unity.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie201276m</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2011-10, Vol.50 (19), p.11406-11421
issn 0888-5885
1520-5045
language eng
recordid cdi_pascalfrancis_primary_24573337
source ACS Publications
subjects Applied sciences
Chemical engineering
Exact sciences and technology
General Research
title Thermodynamic Modeling of the NH3–CO2–H2O System with Electrolyte NRTL Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20Modeling%20of%20the%20NH3%E2%80%93CO2%E2%80%93H2O%20System%20with%20Electrolyte%20NRTL%20Model&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Que,%20Huiling&rft.date=2011-10-05&rft.volume=50&rft.issue=19&rft.spage=11406&rft.epage=11421&rft.pages=11406-11421&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie201276m&rft_dat=%3Cacs_pasca%3Ef1870401%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true