Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures

Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use measured tensile strength data to predict the strength of a complex MEMS structure. To ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2011-08, Vol.20 (4), p.922-932
Hauptverfasser: Reedy, E. D., Boyce, B. L., Foulk, J. W., Field, R. V., de Boer, M. P., Hazra, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 4
container_start_page 922
container_title Journal of microelectromechanical systems
container_volume 20
creator Reedy, E. D.
Boyce, B. L.
Foulk, J. W.
Field, R. V.
de Boer, M. P.
Hazra, S. S.
description Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use measured tensile strength data to predict the strength of a complex MEMS structure. To address such issues, two recently developed high-throughput MEMS tensile test techniques have been used to estimate strength distribution tails by testing approximately 1500 tensile bars. There is strong evidence that the micromachined polycrystalline silicon that was tested in this paper has a lower bound to its tensile strength (i.e., a strength threshold). Process-induced sidewall flaws appear to be the main source of the variability in tensile strength. Variations in as-fabricated dimensions, stress inhomogeneity within a polycrystal, and variations in the apparent fracture toughness do not appear to be dominant contributors to tensile strength variability. The existence of a strength threshold implies that there is maximum flaw size, which consequently enables a linear elastic fracture mechanics flaw-tolerance analysis. This approach was used to estimate a lower bound for the strength of a double edge-notched specimen that compared favorably with our measured values.
doi_str_mv 10.1109/JMEMS.2011.2153824
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_24407742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5910128</ieee_id><sourcerecordid>2559707311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-50afc3329d7506c772ce6652494df104088d7dedece54a2ec89cc8c71cca761b3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoso-PkH9FIE8dQ1k-bzKOInLgqr5xCnU4l0W03aw_57o7t48DQD87wzyVMUx8BmAMxePMyv54sZZwAzDrI2XGwVe2AFVAyk2c49k7rSIPVusZ_SB2MghFF7xdNzpCbgGPr38iZ6HKdIZejLecA4LGmkWC3Qd1Q-D90K4yqNvutCT-UidAGHDObD5WKM0280HRY7re8SHW3qQfF6c_1ydVc9Pt3eX10-VlhLNVaS-RbrmttGS6ZQa46klOTCiqYFJpgxjW6oISQpPCc0FtGgBkSvFbzVB8X5eu9nHL4mSqNbhoTUdb6nYUrOMm0VWF5n8vQf-TFMsc-PcxakUkZKlSG-hvKvU4rUus8Ylj6uHDD3Y9j9GnY_ht3GcA6dbTb7lB210fcY0l-SC8G0FjxzJ2suENHfWFpgwE39DV5AhFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915668556</pqid></control><display><type>article</type><title>Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures</title><source>IEEE Electronic Library (IEL)</source><creator>Reedy, E. D. ; Boyce, B. L. ; Foulk, J. W. ; Field, R. V. ; de Boer, M. P. ; Hazra, S. S.</creator><creatorcontrib>Reedy, E. D. ; Boyce, B. L. ; Foulk, J. W. ; Field, R. V. ; de Boer, M. P. ; Hazra, S. S.</creatorcontrib><description>Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use measured tensile strength data to predict the strength of a complex MEMS structure. To address such issues, two recently developed high-throughput MEMS tensile test techniques have been used to estimate strength distribution tails by testing approximately 1500 tensile bars. There is strong evidence that the micromachined polycrystalline silicon that was tested in this paper has a lower bound to its tensile strength (i.e., a strength threshold). Process-induced sidewall flaws appear to be the main source of the variability in tensile strength. Variations in as-fabricated dimensions, stress inhomogeneity within a polycrystal, and variations in the apparent fracture toughness do not appear to be dominant contributors to tensile strength variability. The existence of a strength threshold implies that there is maximum flaw size, which consequently enables a linear elastic fracture mechanics flaw-tolerance analysis. This approach was used to estimate a lower bound for the strength of a double edge-notched specimen that compared favorably with our measured values.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2011.2153824</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Bars ; Defects ; Estimates ; Exact sciences and technology ; Fracture ; Fracture mechanics ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; materials testing ; Mechanical instruments, equipment and techniques ; Microelectromechanical systems ; Micromechanical devices ; Micromechanical devices and systems ; Physics ; Silicon ; statistics ; Strength ; Stress ; Studies ; Surface topography ; System-on-a-chip ; Tensile strength ; Testing ; Thresholds</subject><ispartof>Journal of microelectromechanical systems, 2011-08, Vol.20 (4), p.922-932</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-50afc3329d7506c772ce6652494df104088d7dedece54a2ec89cc8c71cca761b3</citedby><cites>FETCH-LOGICAL-c356t-50afc3329d7506c772ce6652494df104088d7dedece54a2ec89cc8c71cca761b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5910128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5910128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24407742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reedy, E. D.</creatorcontrib><creatorcontrib>Boyce, B. L.</creatorcontrib><creatorcontrib>Foulk, J. W.</creatorcontrib><creatorcontrib>Field, R. V.</creatorcontrib><creatorcontrib>de Boer, M. P.</creatorcontrib><creatorcontrib>Hazra, S. S.</creatorcontrib><title>Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use measured tensile strength data to predict the strength of a complex MEMS structure. To address such issues, two recently developed high-throughput MEMS tensile test techniques have been used to estimate strength distribution tails by testing approximately 1500 tensile bars. There is strong evidence that the micromachined polycrystalline silicon that was tested in this paper has a lower bound to its tensile strength (i.e., a strength threshold). Process-induced sidewall flaws appear to be the main source of the variability in tensile strength. Variations in as-fabricated dimensions, stress inhomogeneity within a polycrystal, and variations in the apparent fracture toughness do not appear to be dominant contributors to tensile strength variability. The existence of a strength threshold implies that there is maximum flaw size, which consequently enables a linear elastic fracture mechanics flaw-tolerance analysis. This approach was used to estimate a lower bound for the strength of a double edge-notched specimen that compared favorably with our measured values.</description><subject>Bars</subject><subject>Defects</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Fracture</subject><subject>Fracture mechanics</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>materials testing</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>Physics</subject><subject>Silicon</subject><subject>statistics</subject><subject>Strength</subject><subject>Stress</subject><subject>Studies</subject><subject>Surface topography</subject><subject>System-on-a-chip</subject><subject>Tensile strength</subject><subject>Testing</subject><subject>Thresholds</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoso-PkH9FIE8dQ1k-bzKOInLgqr5xCnU4l0W03aw_57o7t48DQD87wzyVMUx8BmAMxePMyv54sZZwAzDrI2XGwVe2AFVAyk2c49k7rSIPVusZ_SB2MghFF7xdNzpCbgGPr38iZ6HKdIZejLecA4LGmkWC3Qd1Q-D90K4yqNvutCT-UidAGHDObD5WKM0280HRY7re8SHW3qQfF6c_1ydVc9Pt3eX10-VlhLNVaS-RbrmttGS6ZQa46klOTCiqYFJpgxjW6oISQpPCc0FtGgBkSvFbzVB8X5eu9nHL4mSqNbhoTUdb6nYUrOMm0VWF5n8vQf-TFMsc-PcxakUkZKlSG-hvKvU4rUus8Ylj6uHDD3Y9j9GnY_ht3GcA6dbTb7lB210fcY0l-SC8G0FjxzJ2suENHfWFpgwE39DV5AhFM</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Reedy, E. D.</creator><creator>Boyce, B. L.</creator><creator>Foulk, J. W.</creator><creator>Field, R. V.</creator><creator>de Boer, M. P.</creator><creator>Hazra, S. S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20110801</creationdate><title>Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures</title><author>Reedy, E. D. ; Boyce, B. L. ; Foulk, J. W. ; Field, R. V. ; de Boer, M. P. ; Hazra, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-50afc3329d7506c772ce6652494df104088d7dedece54a2ec89cc8c71cca761b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bars</topic><topic>Defects</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Fracture</topic><topic>Fracture mechanics</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>materials testing</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>Physics</topic><topic>Silicon</topic><topic>statistics</topic><topic>Strength</topic><topic>Stress</topic><topic>Studies</topic><topic>Surface topography</topic><topic>System-on-a-chip</topic><topic>Tensile strength</topic><topic>Testing</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reedy, E. D.</creatorcontrib><creatorcontrib>Boyce, B. L.</creatorcontrib><creatorcontrib>Foulk, J. W.</creatorcontrib><creatorcontrib>Field, R. V.</creatorcontrib><creatorcontrib>de Boer, M. P.</creatorcontrib><creatorcontrib>Hazra, S. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reedy, E. D.</au><au>Boyce, B. L.</au><au>Foulk, J. W.</au><au>Field, R. V.</au><au>de Boer, M. P.</au><au>Hazra, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>20</volume><issue>4</issue><spage>922</spage><epage>932</epage><pages>922-932</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use measured tensile strength data to predict the strength of a complex MEMS structure. To address such issues, two recently developed high-throughput MEMS tensile test techniques have been used to estimate strength distribution tails by testing approximately 1500 tensile bars. There is strong evidence that the micromachined polycrystalline silicon that was tested in this paper has a lower bound to its tensile strength (i.e., a strength threshold). Process-induced sidewall flaws appear to be the main source of the variability in tensile strength. Variations in as-fabricated dimensions, stress inhomogeneity within a polycrystal, and variations in the apparent fracture toughness do not appear to be dominant contributors to tensile strength variability. The existence of a strength threshold implies that there is maximum flaw size, which consequently enables a linear elastic fracture mechanics flaw-tolerance analysis. This approach was used to estimate a lower bound for the strength of a double edge-notched specimen that compared favorably with our measured values.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2011.2153824</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2011-08, Vol.20 (4), p.922-932
issn 1057-7157
1941-0158
language eng
recordid cdi_pascalfrancis_primary_24407742
source IEEE Electronic Library (IEL)
subjects Bars
Defects
Estimates
Exact sciences and technology
Fracture
Fracture mechanics
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
materials testing
Mechanical instruments, equipment and techniques
Microelectromechanical systems
Micromechanical devices
Micromechanical devices and systems
Physics
Silicon
statistics
Strength
Stress
Studies
Surface topography
System-on-a-chip
Tensile strength
Testing
Thresholds
title Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Fracture%20in%20Micrometer-Scale%20Polycrystalline%20Silicon%20MEMS%20Structures&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Reedy,%20E.%20D.&rft.date=2011-08-01&rft.volume=20&rft.issue=4&rft.spage=922&rft.epage=932&rft.pages=922-932&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2011.2153824&rft_dat=%3Cproquest_RIE%3E2559707311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915668556&rft_id=info:pmid/&rft_ieee_id=5910128&rfr_iscdi=true