Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures
Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use measured tensile strength data to predict the strength of a complex MEMS structure. To ad...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2011-08, Vol.20 (4), p.922-932 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 932 |
---|---|
container_issue | 4 |
container_start_page | 922 |
container_title | Journal of microelectromechanical systems |
container_volume | 20 |
creator | Reedy, E. D. Boyce, B. L. Foulk, J. W. Field, R. V. de Boer, M. P. Hazra, S. S. |
description | Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use measured tensile strength data to predict the strength of a complex MEMS structure. To address such issues, two recently developed high-throughput MEMS tensile test techniques have been used to estimate strength distribution tails by testing approximately 1500 tensile bars. There is strong evidence that the micromachined polycrystalline silicon that was tested in this paper has a lower bound to its tensile strength (i.e., a strength threshold). Process-induced sidewall flaws appear to be the main source of the variability in tensile strength. Variations in as-fabricated dimensions, stress inhomogeneity within a polycrystal, and variations in the apparent fracture toughness do not appear to be dominant contributors to tensile strength variability. The existence of a strength threshold implies that there is maximum flaw size, which consequently enables a linear elastic fracture mechanics flaw-tolerance analysis. This approach was used to estimate a lower bound for the strength of a double edge-notched specimen that compared favorably with our measured values. |
doi_str_mv | 10.1109/JMEMS.2011.2153824 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_24407742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5910128</ieee_id><sourcerecordid>2559707311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-50afc3329d7506c772ce6652494df104088d7dedece54a2ec89cc8c71cca761b3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoso-PkH9FIE8dQ1k-bzKOInLgqr5xCnU4l0W03aw_57o7t48DQD87wzyVMUx8BmAMxePMyv54sZZwAzDrI2XGwVe2AFVAyk2c49k7rSIPVusZ_SB2MghFF7xdNzpCbgGPr38iZ6HKdIZejLecA4LGmkWC3Qd1Q-D90K4yqNvutCT-UidAGHDObD5WKM0280HRY7re8SHW3qQfF6c_1ydVc9Pt3eX10-VlhLNVaS-RbrmttGS6ZQa46klOTCiqYFJpgxjW6oISQpPCc0FtGgBkSvFbzVB8X5eu9nHL4mSqNbhoTUdb6nYUrOMm0VWF5n8vQf-TFMsc-PcxakUkZKlSG-hvKvU4rUus8Ylj6uHDD3Y9j9GnY_ht3GcA6dbTb7lB210fcY0l-SC8G0FjxzJ2suENHfWFpgwE39DV5AhFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915668556</pqid></control><display><type>article</type><title>Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures</title><source>IEEE Electronic Library (IEL)</source><creator>Reedy, E. D. ; Boyce, B. L. ; Foulk, J. W. ; Field, R. V. ; de Boer, M. P. ; Hazra, S. S.</creator><creatorcontrib>Reedy, E. D. ; Boyce, B. L. ; Foulk, J. W. ; Field, R. V. ; de Boer, M. P. ; Hazra, S. S.</creatorcontrib><description>Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use measured tensile strength data to predict the strength of a complex MEMS structure. To address such issues, two recently developed high-throughput MEMS tensile test techniques have been used to estimate strength distribution tails by testing approximately 1500 tensile bars. There is strong evidence that the micromachined polycrystalline silicon that was tested in this paper has a lower bound to its tensile strength (i.e., a strength threshold). Process-induced sidewall flaws appear to be the main source of the variability in tensile strength. Variations in as-fabricated dimensions, stress inhomogeneity within a polycrystal, and variations in the apparent fracture toughness do not appear to be dominant contributors to tensile strength variability. The existence of a strength threshold implies that there is maximum flaw size, which consequently enables a linear elastic fracture mechanics flaw-tolerance analysis. This approach was used to estimate a lower bound for the strength of a double edge-notched specimen that compared favorably with our measured values.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2011.2153824</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Bars ; Defects ; Estimates ; Exact sciences and technology ; Fracture ; Fracture mechanics ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; materials testing ; Mechanical instruments, equipment and techniques ; Microelectromechanical systems ; Micromechanical devices ; Micromechanical devices and systems ; Physics ; Silicon ; statistics ; Strength ; Stress ; Studies ; Surface topography ; System-on-a-chip ; Tensile strength ; Testing ; Thresholds</subject><ispartof>Journal of microelectromechanical systems, 2011-08, Vol.20 (4), p.922-932</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-50afc3329d7506c772ce6652494df104088d7dedece54a2ec89cc8c71cca761b3</citedby><cites>FETCH-LOGICAL-c356t-50afc3329d7506c772ce6652494df104088d7dedece54a2ec89cc8c71cca761b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5910128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5910128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24407742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reedy, E. D.</creatorcontrib><creatorcontrib>Boyce, B. L.</creatorcontrib><creatorcontrib>Foulk, J. W.</creatorcontrib><creatorcontrib>Field, R. V.</creatorcontrib><creatorcontrib>de Boer, M. P.</creatorcontrib><creatorcontrib>Hazra, S. S.</creatorcontrib><title>Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use measured tensile strength data to predict the strength of a complex MEMS structure. To address such issues, two recently developed high-throughput MEMS tensile test techniques have been used to estimate strength distribution tails by testing approximately 1500 tensile bars. There is strong evidence that the micromachined polycrystalline silicon that was tested in this paper has a lower bound to its tensile strength (i.e., a strength threshold). Process-induced sidewall flaws appear to be the main source of the variability in tensile strength. Variations in as-fabricated dimensions, stress inhomogeneity within a polycrystal, and variations in the apparent fracture toughness do not appear to be dominant contributors to tensile strength variability. The existence of a strength threshold implies that there is maximum flaw size, which consequently enables a linear elastic fracture mechanics flaw-tolerance analysis. This approach was used to estimate a lower bound for the strength of a double edge-notched specimen that compared favorably with our measured values.</description><subject>Bars</subject><subject>Defects</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Fracture</subject><subject>Fracture mechanics</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>materials testing</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>Physics</subject><subject>Silicon</subject><subject>statistics</subject><subject>Strength</subject><subject>Stress</subject><subject>Studies</subject><subject>Surface topography</subject><subject>System-on-a-chip</subject><subject>Tensile strength</subject><subject>Testing</subject><subject>Thresholds</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoso-PkH9FIE8dQ1k-bzKOInLgqr5xCnU4l0W03aw_57o7t48DQD87wzyVMUx8BmAMxePMyv54sZZwAzDrI2XGwVe2AFVAyk2c49k7rSIPVusZ_SB2MghFF7xdNzpCbgGPr38iZ6HKdIZejLecA4LGmkWC3Qd1Q-D90K4yqNvutCT-UidAGHDObD5WKM0280HRY7re8SHW3qQfF6c_1ydVc9Pt3eX10-VlhLNVaS-RbrmttGS6ZQa46klOTCiqYFJpgxjW6oISQpPCc0FtGgBkSvFbzVB8X5eu9nHL4mSqNbhoTUdb6nYUrOMm0VWF5n8vQf-TFMsc-PcxakUkZKlSG-hvKvU4rUus8Ylj6uHDD3Y9j9GnY_ht3GcA6dbTb7lB210fcY0l-SC8G0FjxzJ2suENHfWFpgwE39DV5AhFM</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Reedy, E. D.</creator><creator>Boyce, B. L.</creator><creator>Foulk, J. W.</creator><creator>Field, R. V.</creator><creator>de Boer, M. P.</creator><creator>Hazra, S. S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20110801</creationdate><title>Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures</title><author>Reedy, E. D. ; Boyce, B. L. ; Foulk, J. W. ; Field, R. V. ; de Boer, M. P. ; Hazra, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-50afc3329d7506c772ce6652494df104088d7dedece54a2ec89cc8c71cca761b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bars</topic><topic>Defects</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Fracture</topic><topic>Fracture mechanics</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>materials testing</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>Physics</topic><topic>Silicon</topic><topic>statistics</topic><topic>Strength</topic><topic>Stress</topic><topic>Studies</topic><topic>Surface topography</topic><topic>System-on-a-chip</topic><topic>Tensile strength</topic><topic>Testing</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reedy, E. D.</creatorcontrib><creatorcontrib>Boyce, B. L.</creatorcontrib><creatorcontrib>Foulk, J. W.</creatorcontrib><creatorcontrib>Field, R. V.</creatorcontrib><creatorcontrib>de Boer, M. P.</creatorcontrib><creatorcontrib>Hazra, S. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reedy, E. D.</au><au>Boyce, B. L.</au><au>Foulk, J. W.</au><au>Field, R. V.</au><au>de Boer, M. P.</au><au>Hazra, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>20</volume><issue>4</issue><spage>922</spage><epage>932</epage><pages>922-932</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use measured tensile strength data to predict the strength of a complex MEMS structure. To address such issues, two recently developed high-throughput MEMS tensile test techniques have been used to estimate strength distribution tails by testing approximately 1500 tensile bars. There is strong evidence that the micromachined polycrystalline silicon that was tested in this paper has a lower bound to its tensile strength (i.e., a strength threshold). Process-induced sidewall flaws appear to be the main source of the variability in tensile strength. Variations in as-fabricated dimensions, stress inhomogeneity within a polycrystal, and variations in the apparent fracture toughness do not appear to be dominant contributors to tensile strength variability. The existence of a strength threshold implies that there is maximum flaw size, which consequently enables a linear elastic fracture mechanics flaw-tolerance analysis. This approach was used to estimate a lower bound for the strength of a double edge-notched specimen that compared favorably with our measured values.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2011.2153824</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2011-08, Vol.20 (4), p.922-932 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_pascalfrancis_primary_24407742 |
source | IEEE Electronic Library (IEL) |
subjects | Bars Defects Estimates Exact sciences and technology Fracture Fracture mechanics Instruments, apparatus, components and techniques common to several branches of physics and astronomy materials testing Mechanical instruments, equipment and techniques Microelectromechanical systems Micromechanical devices Micromechanical devices and systems Physics Silicon statistics Strength Stress Studies Surface topography System-on-a-chip Tensile strength Testing Thresholds |
title | Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Fracture%20in%20Micrometer-Scale%20Polycrystalline%20Silicon%20MEMS%20Structures&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Reedy,%20E.%20D.&rft.date=2011-08-01&rft.volume=20&rft.issue=4&rft.spage=922&rft.epage=932&rft.pages=922-932&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2011.2153824&rft_dat=%3Cproquest_RIE%3E2559707311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915668556&rft_id=info:pmid/&rft_ieee_id=5910128&rfr_iscdi=true |